1. (36 marks total) Justify your answers with a brief explanation (but be careful to mention the key points).

 a) Let K/F be a Galois extension of degree n. What is the order of the Galois group $\text{Gal } K/F$?

 b) What is $\text{Gal } \mathbb{F}_{64}/\mathbb{F}_2$?

 c) Is the Galois group of $x^6 - 3x^3 - 6$ over \mathbb{Q} isomorphic to S_6?

 d) Is the dihedral group of order 10 solvable?

 e) What is the Galois closure of $\mathbb{Q}(\sqrt[5]{2})/\mathbb{Q}$?

 f) Let $L/K, K/F$ be Galois field extensions.

 i) Is L/F separable?

 ii) Is L/F Galois?

 g) Is $x^5 - 4x + 2 \in \mathbb{Q}[x]$ solvable by radicals?

 h) Give an example of a Galois extension K of $\mathbb{Q}(i)$ whose Galois group is isomorphic to $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

 i) For $K = \mathbb{Q}(\sqrt[5]{2}, \sqrt[3]{3})$, compute $N_{K/\mathbb{Q}}(2 + \sqrt[5]{2})$.

 j) Let K/F be a finite abelian extension and L be an intermediate field. Is L/F a Galois extension?

 k) Let $L/K, K/F$ be purely inseparable field extensions. Is L/F purely inseparable?

2. (8 marks total) Let $K = \mathbb{Q}(e^{2\pi i/3}, \sqrt[5]{5})$ and consider the field extension K/\mathbb{Q}.

 a) (3 marks) What is the Galois group G of K/\mathbb{Q}? Justify your answer.

 b) (5 marks) Write down all the intermediate fields of K/\mathbb{Q} and the corresponding subgroups of G. You need not explain your computations.

3. (8 marks) Let K/F be a finite Galois extension with Galois group $G \simeq G_1 \times G_2$ for some groups G_1, G_2. Show that there exist intermediate fields L_1, L_2 satisfying the following three conditions.

 a) For $i = 1, 2$, L_i/F is Galois with Galois group isomorphic to G_i.

 b) K is the smallest field containing both L_1 and L_2.

Please see over . . .
c) \(L_1 \cap L_2 = F \).

Make sure you fully justify your answer.

4. (5 marks total) Consider the field automorphism \(\sigma : \mathbb{C}(t) \rightarrow \mathbb{C}(t) \) defined by

\[(\sigma f)(t) := f(t^{-1}).\]

Let \(G \) be the cyclic group generated by \(\sigma \).

a) (1 mark) What is the order of \(G \)?

b) (2 marks) What is \([\mathbb{C}(t) : \mathbb{C}(t + t^{-1})]\)?

c) (2 marks) Prove that \(\mathbb{C}(t)^G = \mathbb{C}(t + t^{-1}) \).

5. (6 marks total) This question concerns the existence of the so called “maximal abelian subextension”.

a) (3 marks) Let \(G \) be a (not necessarily Hausdorff) topological group and \(N \) be a normal subgroup. Prove that the closure of \(N \) is also a normal subgroup.

b) (3 marks) Let \(K/F \) be a Galois extension. Show that there exists an intermediate field \(K_{ab} \) satisfying the following two conditions.

i) \(K_{ab}/F \) is an abelian extension.

ii) If \(L \) is any intermediate field of \(K/F \) such that \(L/F \) is also an abelian extension, then \(L \subseteq K_{ab} \).

6. (7 marks total) Recall that we have the following pro-finite groups

\[\hat{\mathbb{Z}} = \lim_{\rightarrow n} \mathbb{Z}/n\mathbb{Z}, \quad \hat{\mathbb{Z}}_p = \lim_{\rightarrow j} \mathbb{Z}/p^j\mathbb{Z} \]

where \(p \) is any prime.

a) (3 marks) Show that

\[\hat{\mathbb{Z}} \simeq \prod_{p, \text{ prime}} \hat{\mathbb{Z}}_p. \]

b) (2 marks) Let \(\phi : \hat{\mathbb{Z}} \rightarrow \hat{\mathbb{Z}}_p \) denote the natural projection. Show that \(H := \ker \phi \) is a closed subgroup of \(\hat{\mathbb{Z}} \).

c) (2 marks) Suppose \(q \) is a prime and let us identify the absolute Galois group \(\text{Gal } \overline{\mathbb{F}}_q/\mathbb{F}_q \) with \(\hat{\mathbb{Z}} \) as in lectures so that we may consider \(H \) as a subgroup of \(\text{Gal } \overline{\mathbb{F}}_q/\mathbb{F}_q \). Determine with reason, the fixed field \(\mathbb{F}_q^H \).