MATH1231 Algebra, 2017
Chapter 7: Linear maps

A/Prof. Daniel Chan

School of Mathematics and Statistics
University of New South Wales
danielc@unsw.edu.au
Chapter overview

$\mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $f(x,y) = 2x - 3y$ is an example of a linear function, $g(x,y) = x^2 - 5y$ is not.

In this chapter, study more generally linear transformations $T: \mathbb{R}^m \rightarrow \mathbb{R}^n$.

Even more generally, study linear $T: V \rightarrow W$ where V, W = vector spaces \mathbb{F}.

Recall V is the domain of T & W the codomain of T.

We'll generalise systems of linear equations $A\mathbf{x} = \mathbf{b}$ to "linear equations" of form $T\mathbf{x} = \mathbf{b}$ where $\mathbf{b} \in W$, $\mathbf{x} \in V$.

Often abbreviate $T(x) = T\mathbf{x}$.

Daniel Chan (UNSW) 7.1 Introduction to Linear Maps
Chapter overview

- \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(f\begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y \) is example of a linear function, \(g\begin{pmatrix} x \\ y \end{pmatrix} = x^2 - 5y \) is not.
Chapter overview

- \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(f(\begin{pmatrix} x \\ y \end{pmatrix}) = 2x - 3y \) is example of a linear function, \(g(\begin{pmatrix} x \\ y \end{pmatrix}) = x^2 - 5y \) is not.

- In this chapter, study more generally \textbf{linear transformations} \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \).
Chapter overview

- $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $f \begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y$ is example of a linear function, $g \begin{pmatrix} x \\ y \end{pmatrix} = x^2 - 5y$ is not.
- In this chapter, study more generally **linear transformations** $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$.
- Even more gen, study linear $T : V \rightarrow W$ where $V, W =$ vector spaces over \mathbb{F}.
Chapter overview

- \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(f \left(\begin{array}{c} x \\ y \end{array} \right) = 2x - 3y \) is example of a linear function, \(g \left(\begin{array}{c} x \\ y \end{array} \right) = x^2 - 5y \) is not.

- In this chapter, study more generally \textbf{linear transformations} \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \).

- Even more gen, study linear \(T : V \rightarrow W \) where \(V, W = \text{vector spaces} / \mathbb{F} \). Recall \(V \) is the \textbf{domain} of \(T \) & \(W \) the \textbf{codomain} of \(T \).
Chapter overview

- \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(f\left(\begin{array}{c} x \\ y \end{array}\right) = 2x - 3y \) is example of a linear function, \(g\left(\begin{array}{c} x \\ y \end{array}\right) = x^2 - 5y \) is not.

- In this chapter, study more generally linear transformations \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \).

- Even more gen, study linear \(T : V \rightarrow W \) where \(V, W = \) vector spaces /\(\mathbb{F} \). Recall \(V \) is the domain of \(T \) & \(W \) the codomain of \(T \).

- We’ll generalise systems of linear equations \(A\mathbf{x} = \mathbf{b} \) to “linear equations” of form \(T\mathbf{x} = \mathbf{b} \) where \(\mathbf{b} \in W, \mathbf{x} \in V \).
Chapter overview

- $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $f \left(\begin{array}{c} x \\ y \end{array} \right) = 2x - 3y$ is example of a linear function, $g \left(\begin{array}{c} x \\ y \end{array} \right) = x^2 - 5y$ is not.

- In this chapter, study more generally linear transformations $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$.

- Even more gen, study linear $T : V \rightarrow W$ where $V, W = \text{vector spaces} / \mathbb{F}$. Recall V is the domain of T & W the codomain of T.

- We’ll generalise systems of linear equations $Ax = b$ to “linear equations” of form $Tx = b$ where $b \in W, x \in V$.

Often abbrev $T(x) = Tx$.
Addition Condition

To define linear map, first consider Addition Condition. We say $T: V \rightarrow W$ satisfies the addition condition, if $T(v + v') = T(v) + T(v')$ for all $v, v' \in V$.

E.g. $T: \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T(x, y) = 2x - 3y$ satisfies the addn condn since given $(x, y), (x', y') \in \mathbb{R}^2$, $T((x, y) + (x', y')) = T(x, y) + T(x', y')$.

Warning: The + on the two sides of the equation are different!
Addition Condition

To define linear map, first consider

We say $T : V \rightarrow W$ satisfies the addition condition, if $T(v + v') = T(v) + T(v')$ for all $v, v' \in V$.

E.g. $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T(x y) = 2x - 3y$ satisfies the addn condn since given $(x y), (x' y') \in \mathbb{R}^2$,

$T((x y) + (x' y')) = T(x y) + T(x' y')$.

Warning: The + on the two sides of the equation are different!
Addition Condition

To define linear map, first consider

Addition Condition.

We say $T : V \rightarrow W$ satisfies the addition condition, if
Addition Condition

To define linear map, first consider

Addition Condition.

We say $T : V \rightarrow W$ satisfies the **addition condition**, if

$$T(v + v') = T(v) + T(v') \text{ for all } v, v' \in V.$$
To define linear map, first consider

Addition Condition.

We say \(T : V \rightarrow W \) satisfies the **addition condition**, if

\[
T(v + v') = T(v) + T(v') \quad \text{for all } v, v' \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T\begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y \) satisfies the addn condn since given \(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \in \mathbb{R}^2 \)
To define linear map, first consider

Addition Condition.

We say \(T : V \rightarrow W \) satisfies the **addition condition**, if

\[
T(v + v') = T(v) + T(v') \quad \text{for all } v, v' \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T\begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y \) satisfies the addn condn since given \(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \in \mathbb{R}^2 \)

\[
T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} \right) =
\]
Addition Condition

To define linear map, first consider

Addition Condition.

We say \(T : V \rightarrow W \) satisfies the **addition condition**, if

\[
T(v + v') = T(v) + T(v') \quad \text{for all } v, v' \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T\left(\begin{array}{c} x \\ y \end{array}\right) = 2x - 3y \) satisfies the addn condn

since given \(\left(\begin{array}{c} x \\ y \end{array}\right), \left(\begin{array}{c} x' \\ y' \end{array}\right) \in \mathbb{R}^2 \)

\[
T \left(\left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} x' \\ y' \end{array}\right) \right) = \\
T \left(\begin{array}{c} x \\ y \end{array}\right) + T \left(\begin{array}{c} x' \\ y' \end{array}\right) =
\]
To define linear map, first consider

Addition Condition.

We say $T : V \rightarrow W$ satisfies the **addition condition**, if

$$T(v + v') = T(v) + T(v') \text{ for all } v, v' \in V.$$

E.g. $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T \begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y$ satisfies the addn condn since given $\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \in \mathbb{R}^2$

$$T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} \right) =$$

$$T \begin{pmatrix} x \\ y \end{pmatrix} + T \begin{pmatrix} x' \\ y' \end{pmatrix} =$$

Warning The $+$ on the two sides of the equation are different!
Scalar Multiplication Condition

We say $T: V \to W$ satisfies the scalar multiplication condition, if $T(\lambda v) = \lambda T(v)$ for all $\lambda \in F$ and $v \in V$.

E.g. $T: \mathbb{R}^2 \to \mathbb{R}$ defined by $T(x, y) = 2x - 3y$ satisfies the scalar multiplication condition since given $(x, y) \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$, $T(\lambda(x, y)) = \lambda T(x, y)$.

Warning: The scalar multiplication on both sides of the equation is different!
Scalar Multiplication Condition.

We say $T : V \rightarrow W$ satisfies the **scalar multiplication condition**, if

$T(\lambda v) = \lambda T(v)$ for all $\lambda \in F$ and $v \in V$.

Example. $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T(x, y) = 2x - 3y$ satisfies the scalar multiplication condition since given $(x, y) \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$

$T(\lambda(x, y)) = \lambda T(x, y) = \lambda (2x - 3y)$.

Warning. The scalar multiplication on the two sides of the equation are different!
Scalar Multiplication Condition.

We say \(T : V \rightarrow W \) satisfies the **scalar multiplication condition**, if

\[
T(\lambda v) = \lambda T(v) \quad \text{for all } \lambda \in \mathbb{F} \text{ and } v \in V.
\]
Scalar Multiplication Condition

We say \(T : V \rightarrow W \) satisfies the **scalar multiplication condition**, if

\[
T(\lambda \mathbf{v}) = \lambda T(\mathbf{v}) \quad \text{for all } \lambda \in \mathbb{F} \text{ and } \mathbf{v} \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = 2x - 3y \) satisfies the scalar multn condn since given \(\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \lambda \in \mathbb{R} \)
Scalar Multiplication Condition

We say \(T : V \rightarrow W \) satisfies the **scalar multiplication condition**, if

\[
T(\lambda v) = \lambda T(v) \quad \text{for all } \lambda \in \mathbb{F} \text{ and } v \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T \left(\begin{array}{c} x \\ y \end{array} \right) = 2x - 3y \) satisfies the scalar multn condn since given \(\left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2, \lambda \in \mathbb{R} \)

\[
T \left(\lambda \left(\begin{array}{c} x \\ y \end{array} \right) \right) =
\]
Scalar Multiplication Condition

We say \(T : V \rightarrow W \) satisfies the **scalar multiplication condition**, if

\[
T(\lambda v) = \lambda T(v) \text{ for all } \lambda \in \mathbb{F} \text{ and } v \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T \left(\begin{array}{c} x \\ y \end{array} \right) = 2x - 3y \) satisfies the scalar multn condn since given \(\left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2, \lambda \in \mathbb{R} \)

\[
T \left(\lambda \left(\begin{array}{c} x \\ y \end{array} \right) \right) =
\]

\[
\lambda T \left(\begin{array}{c} x \\ y \end{array} \right) =
\]
Scalar Multiplication Condition

We say \(T : V \rightarrow W \) satisfies the scalar multiplication condition, if

\[
T(\lambda v) = \lambda T(v) \quad \text{for all } \lambda \in F \text{ and } v \in V.
\]

E.g. \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = 2x - 3y \) satisfies the scalar multn condn since given \(\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \lambda \in \mathbb{R} \)

\[
T \left(\lambda \begin{pmatrix} x \\ y \end{pmatrix} \right) =
\]

\[
\lambda T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) =
\]

Warning The scalar multn on the two sides of the eqn are different!
Definition

Let V, $W = \text{vector spaces}$.

A function $T: V \to W$ is called a linear map or a linear transformation if following both hold.

Addition Condition.

$T(v + v') = T(v) + T(v') \quad \text{for all } v, v' \in V$.

Scalar Multiplication Condition.

$T(\lambda v) = \lambda T(v) \quad \text{for all } \lambda \in F \text{ and } v \in V$.

E.g. $T: \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T(x,y) = 2x - 3y$ is linear.
Definition

Let $V, W = \text{vector spaces over } F$.

A function $T : V \to W$ is called a linear map or a linear transformation if the following both hold.

Addition Condition. $T(v + v') = T(v) + T(v')$ for all $v, v' \in V$.

Scalar Multiplication Condition. $T(\lambda v) = \lambda T(v)$ for all $\lambda \in F$ and $v \in V$.

E.g. $T : \mathbb{R}^2 \to \mathbb{R}$ defined by $T(x, y) = 2x - 3y$ is linear.
Linear Transformation

Definition

Let V, W = vector spaces over \mathbb{F}. A function $T : V \rightarrow W$ is called a linear map or a linear transformation if following both hold.

- **Addition Condition.** $T(v + v') = T(v) + T(v')$ for all $v, v' \in V$.
- **Scalar Multiplication Condition.** $T(\lambda v) = \lambda T(v)$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

E.g. $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T(x, y) = 2x - 3y$ is linear.
Definition

Let $V, W = \text{vector spaces } /\mathbb{F}$. A function $T : V \to W$ is called a \textbf{linear map} or a \textbf{linear transformation} if following both hold.

\textbf{Addition Condition.}

\[T(v + v') = T(v) + T(v') \text{ for all } v, v' \in V, \text{ and} \]
Linear Transformation

Definition
Let \(V, W = \text{vector spaces } \mathbb{F} \). A function \(T: V \rightarrow W \) is called a linear map or a linear transformation if following both hold.

Addition Condition.
\[
T(v + v') = T(v) + T(v') \quad \text{for all } v, v' \in V, \text{ and }
\]

Scalar Multiplication Condition.
\[
T(\lambda v) = \lambda T(v) \quad \text{for all } \lambda \in \mathbb{F} \text{ and } v \in V.
\]
Linear Transformation

Definition

Let $V, W = $ vector spaces over \mathbb{F}. A function $T : V \rightarrow W$ is called a **linear map** or a **linear transformation** if following both hold.

Addition Condition.

$$T(v + v') = T(v) + T(v') \text{ for all } v, v' \in V,$$

Scalar Multiplication Condition.

$$T(\lambda v) = \lambda T(v) \text{ for all } \lambda \in \mathbb{F} \text{ and } v \in V.$$

E.g. $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T(\begin{pmatrix} x \\ y \end{pmatrix}) = 2x - 3y$ is linear.
Sample question: showing a function is linear.

Example

Show that the function $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ defined by

$$T(x) = \begin{pmatrix} 4x_2 - 3x_3 \\ x_1 + 2x_2 \end{pmatrix} \quad \text{for} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$

is a linear map.

Solution
Proposition.

If $T : V \rightarrow W$ is a linear map, then $T(0) = 0$.

Example

Show that the function $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by

$$T(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_2 - 2x_1 \\ 0 \end{pmatrix}$$

is not linear.
Proposition.

If $T : V \rightarrow W$ *is a linear map, then* $T(0) = 0$.

Proof. $T(0) = T(00) = 0 \cdot T(0) = 0$.

Example

Show that the function $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by $T(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_2 - 2x_1 \end{pmatrix}$ is not linear.

Soln Daniel Chan (UNSW)
Linear maps preserve zero.

Proposition.

If $T : V \rightarrow W$ *is a linear map, then* $T(0) = 0$.

Proof. $T(0) = T(00) = 0 T(0) = 0$.

Example

Show that the function $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by $T \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) = \begin{pmatrix} x_1 + x_2 \\ x_2 - 2 \\ x_1 \end{pmatrix}$ is not linear.

Soln
Another non-linear example

Example

Show that the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + x_2, x_2^2)$ is not linear.

Solution

Checking $T(0) = 0$ here tells you nothing about linearity.

Suffice to check that $T(\lambda v)$ fails for single choice of pair λ, v.
Another non-linear example

Example

Show that the function $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2^2 \end{pmatrix}$$

is not linear.

Solution

Checking $T(0) = 0$ here tells you nothing about linearity. Suffice check that $T(\lambda \mathbf{v}) = \lambda T \mathbf{v}$ fails for single choice of pair λ, \mathbf{v}.
Theorem

The function $T : V \to W$ is a linear map iff for all $\lambda \in F$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark

This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = T(a) + \lambda T(v)$ or point $T(a)$ if $T(v) = 0$.

E.g. Differentiation is a linear map.

More precisely, we define $T : P \to P$ by $T_p = \frac{dp}{dx}$. Then for $p, q \in P$, $\lambda \in \mathbb{R}$

$$T(\lambda p + q) = \frac{\lambda dp}{dx} + \frac{dq}{dx}.$$
Alternate characterisation of linearity

We can combine the addn condn & scalar multn condn into one!

Theorem

The function $T : V \rightarrow W$ is a linear map iff for all $\lambda \in F$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark

This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = T(a) + \lambda T(v)$ or point $T(a)$ if $T(v) = 0$.

E.g. Differentation is a linear map.

More precisely, we define $T : P \rightarrow P$ by $Tp = \frac{dp}{dx}$. Then for $p, q \in P, \lambda \in \mathbb{R}$

$$T(\lambda p + q) = \lambda \frac{dp}{dx} + \frac{dq}{dx}.$$
Alternate characterisation of linearity

We can combine the addn condn & scalar multn condn into one!

Theorem

The function $T : V \to W$ is a linear map iff for all $\lambda \in \mathbb{F}$ and $\mathbf{v}_1, \mathbf{v}_2 \in V$

$$T(\lambda \mathbf{v}_1 + \mathbf{v}_2) = \lambda T(\mathbf{v}_1) + T(\mathbf{v}_2).$$
Theorem

The function $T : V \rightarrow W$ is a linear map iff for all $\lambda \in \mathbb{F}$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = Ta + \lambda Tv$ or point Ta if $Tv = 0$.
Alternate characterisation of linearity

We can combine the addn condn & scalar multn condn into one!

Theorem

The function $T : V \rightarrow W$ is a linear map iff for all $\lambda \in \mathbb{F}$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = Ta + \lambda Tv$ or point Ta if $Tv = 0$.

E.g. Differentation is a linear map.
Alternate characterisation of linearity

We can combine the addn condn & scalar multn condn into one!

Theorem

The function $T : V \rightarrow W$ is a linear map iff for all $\lambda \in F$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = Ta + \lambda Tv$ or point Ta if $Tv = 0$.

E.g. Differentation is a linear map. More precisely, we define $T : \mathbb{P} \rightarrow \mathbb{P}$ by $Tp = \frac{dp}{dx}$. Then for $p, q \in \mathbb{P}, \lambda \in \mathbb{R}$
Alternate characterisation of linearity

We can combine the addn condn & scalar multn condn into one!

Theorem

The function $T : V \rightarrow W$ is a linear map iff for all $\lambda \in \mathbb{F}$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = Ta + \lambda Tv$ or point Ta if $Tv = 0$.

E.g. Differentation is a linear map. More precisely, we define $T : \mathbb{P} \rightarrow \mathbb{P}$ by $Tp = \frac{dp}{dx}$. Then for $p, q \in \mathbb{P}, \lambda \in \mathbb{R}$

$$T(\lambda p + q) =$$
Theorem

If $T : V \to W$ is linear map, $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ & $\lambda_1, \ldots, \lambda_n$ are scalars, then

$$T(\lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n) = \lambda_1 T(\mathbf{v}_1) + \cdots + \lambda_n T(\mathbf{v}_n).$$
Theorem

If $T : V \rightarrow W$ is linear map, $v_1, \ldots, v_n \in V$ & $\lambda_1, \ldots, \lambda_n$ are scalars, then

$$T(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_1 T(v_1) + \cdots + \lambda_n T(v_n).$$

Example

If $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ a function such that

$$T \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad T \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Show that T is not linear.

Solution
Example

Given that T is a linear map and

$$
T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},
T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix},
T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}.
$$

Find $T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Solution
Linear maps are determined by the values on a spanning set

Previous eg illustrates the following general result.

\[\text{Theorem} \]

\[T : V \rightarrow W \text{ is linear} \quad \text{and} \quad V = \text{span}(v_1, \ldots, v_m) \]

Then \(T \) is completely determined by the \(m \) values \(T(v_1), \ldots, T(v_m) \).

Compare with the following:

An affine linear function \(f(x) = mx + b \) is determined by two of its values \(f(x_1), f(x_2) \), since its graph is a line which is determined by two points.
Linear maps are determined by the values on a spanning set

Previous eg illustrates the following general result.

Theorem

Let $T : V \rightarrow W$ be linear & $V = \text{span}(v_1, \ldots, v_m)$. Then T is completely determined by the m values $T v_1, \ldots, T v_m$.
Linear maps are determined by the values on a spanning set

Previous eg illustrates the following general result.

Theorem

Let \(T : V \rightarrow W \) be linear & \(V = \text{span}(v_1, \ldots, v_m) \). Then \(T \) is completely determined by the \(m \) values \(Tv_1, \ldots, Tv_m \).

Compare with the following:

An affine linear function \(f(x) = mx + b \) is determined by two of its values \(f(x_1), f(x_2) \), since its graph is a line which is determined by two points.
Linear maps are determined by the values on a spanning set

Previous eg illustrates the following general result.

Theorem

Let \(T : V \longrightarrow W \) be linear & \(V = \text{span}(v_1, \ldots, v_m) \). Then \(T \) is completely determined by the \(m \) values \(T v_1, \ldots, T v_m \).

Compare with the following:

An affine linear function \(f(x) = mx + b \) is determined by two of its values \(f(x_1), f(x_2) \), since
Linear maps are determined by the values on a spanning set

Previous eg illustrates the following general result.

Theorem

Let $T : V \rightarrow W$ be linear & $V = \text{span}(v_1, \ldots, v_m)$. Then T is completely determined by the m values $T v_1, \ldots, T v_m$.

Compare with the following:

An affine linear function $f(x) = mx + b$ is determined by two of its values $f(x_1), f(x_2)$, since its graph is a line which is determined by two points.
Theorem

For each $m \times n$ matrix A, the function $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$, defined by

$$T_A(x) = Ax \quad \text{for} \quad x \in \mathbb{R}^n,$$

is a linear map called the associated linear map.

Proof.
Example of reflection

Example

Let \(A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \), describe the associated linear map \(T_A \) geometrically as a mapping \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \).

Solution
Matrix Representation Theorem

Conversely, given linear $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$, we can find an $m \times n$ matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^n$.
Matrix Representation Theorem

Conversely, given linear $T : \mathbb{R}^n \to \mathbb{R}^m$, we can find an $m \times n$ matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^n$. In this case, we say A is a matrix representing T.

Example

Given that $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x y) = \begin{bmatrix} x + 2y \\ 2x - y \\ y \end{bmatrix}$ is linear. Find the matrix A representing T.

Solution
Matrix Representation Theorem

Conversely, given linear \(T : \mathbb{R}^n \to \mathbb{R}^m \), we can find an \(m \times n \) matrix \(A \) such that \(T(x) = Ax \) for all \(x \in \mathbb{R}^n \). In this case, we say \(A \) is a matrix representing \(T \).

Example

Given that \(T : \mathbb{R}^2 \to \mathbb{R}^3 \) defined by \(T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x - y \\ y \end{pmatrix} \) is linear. Find the matrix \(A \) representing \(T \).
Matrix Representation Theorem

Conversely, given linear \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \), we can find an \(m \times n \) matrix \(A \) such that \(T(x) = Ax \) for all \(x \in \mathbb{R}^n \). In this case, we say \(A \) is a matrix representing \(T \).

Example

Given that \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) defined by \(T \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x + 2y \\ 2x - y \\ y \end{array} \right) \) is linear. Find the matrix \(A \) representing \(T \).

Solution
Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and let the vectors e_j for $1 \leq j \leq n$ be the standard basis vectors for \mathbb{R}^n.

Then the $m \times n$ matrix $A = (T e_1 | T e_2 | ... | T e_n)$ has the property that $T(x) = Ax$ for all $x \in \mathbb{R}^n$.

E.g. In the example of the previous slide, $T e_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $T e_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, so the representing matrix is

$$
\begin{pmatrix}
1 & 2 \\
0 & 1 \\
\end{pmatrix}
$$
Theorem

Let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a linear map and let the vectors \(e_j \) for \(1 \leq j \leq n \) be the standard basis vectors for \(\mathbb{R}^n \).
Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and let the vectors e_j for $1 \leq j \leq n$ be the standard basis vectors for \mathbb{R}^n. Then the $m \times n$ matrix

$$A = (Te_1 \mid Te_2 \mid \ldots \mid Te_n)$$

has the property that

$$T(x) = Ax \quad \text{for all} \quad x \in \mathbb{R}^n.$$
Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and let the vectors e_j for $1 \leq j \leq n$ be the standard basis vectors for \mathbb{R}^n. Then the $m \times n$ matrix

$$A = (T e_1 | T e_2 | \ldots | T e_n)$$

has the property that

$$T(x) = Ax \quad \text{for all} \quad x \in \mathbb{R}^n.$$

E.g. In the example of the previous slide,
Theorem

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear map and let the vectors e_j for $1 \leq j \leq n$ be the standard basis vectors for \mathbb{R}^n. Then the $m \times n$ matrix

$$A = (Te_1 | Te_2 | \ldots | Te_n)$$

has the property that

$$T(x) = Ax \text{ for all } x \in \mathbb{R}^n.$$

E.g. In the example of the previous slide,

$Te_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $Te_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ so the representing matrix is
A 5-point star with vertices $A(1, 5), B(4, 3), C(3, -1), D(-1, -1)$ and $E(-2, 3)$.
Example

Find and draw the image of the 5-point star under the linear map T_M defined by the matrix $M = \begin{pmatrix} 0.5 & 0 \\ 0 & 2 \end{pmatrix}$.

Solution
Rotation about 0 is linear

Consider the map R_α, which rotates the \mathbb{R}^2 plane through an angle α anticlockwise about the origin.
Rotation about 0 is linear

Consider the map R_α, which rotates the \mathbb{R}^2 plane through an angle α anticlockwise about the origin.

One can show geometrically that R_α is a linear map see Section 7.3. example 3.
Consider the map \(R_\alpha \), which rotates the \(\mathbb{R}^2 \) plane through an angle \(\alpha \) anticlockwise about the origin.

One can show geometrically that \(R_\alpha \) is a linear map see Section 7.3. example 3.

Example

Find the matrix \(A \) representing \(R_\alpha \).
Rotation about 0 is linear

Consider the map R_α, which rotates the \mathbb{R}^2 plane through an angle α anticlockwise about the origin.

One can show geometrically that R_α is a linear map see Section 7.3. example 3.

Example

Find the matrix A representing R_α.

Solution
Projection onto b is linear

Recall given $b \in \mathbb{R}^n$ we have a projection map $\text{proj}_b : \mathbb{R}^n \rightarrow \mathbb{R}^n$ which sends $x \mapsto \text{proj}_b x$.

Proposition

$$\text{proj}_b x = \frac{1}{||b||^2} b b^T x$$

Hence proj_b is linear being the linear map associated to the matrix $A = \frac{1}{||b||^2} b b^T$.

Proof.

Note $A x = \frac{1}{||b||^2} b b^T x = \frac{1}{||b||^2} b (b \cdot x) = b \cdot x \frac{1}{||b||^2} b = \text{proj}_b x$ from the formula for proj_b given in MATH1131 Daniel Chan (UNSW) 7.3 Linear maps from geometry
Projection onto \mathbf{b} is linear

Recall given $\mathbf{b} \in \mathbb{R}^n$ we have a projection map $\text{proj}_b : \mathbb{R}^n \rightarrow \mathbb{R}^n$ which sends $\mathbf{x} \mapsto \text{proj}_b \mathbf{x}$.

Proposition \[\text{proj}_b \mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b} (\mathbf{b} \cdot \mathbf{x}) \]

Hence proj_b is linear being the linear map associated to the matrix $A = \frac{1}{|\mathbf{b}|^2} \mathbf{b} \mathbf{b}^T$.

Proof. Note \[A \mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b} (\mathbf{b} \cdot \mathbf{x}) = \mathbf{b} \cdot \mathbf{x} \frac{1}{|\mathbf{b}|^2} \mathbf{b} = \text{proj}_b \mathbf{x} \] from the formula for $\text{proj}_b \mathbf{x}$ given in MATH1131 Daniel Chan (UNSW) 7.3 Linear maps from geometry 24 / 43
Projection onto b is linear

Recall given $b \in \mathbb{R}^n$ we have a projection map $\text{proj}_b : \mathbb{R}^n \to \mathbb{R}^n$ which sends $x \mapsto \text{proj}_b x$.

Proposition

$$\text{proj}_b x = \frac{1}{|b|^2} bb^T x$$
Projection onto \(\mathbf{b} \) is linear

Recall given \(\mathbf{b} \in \mathbb{R}^n \) we have a projection map \(\text{proj}_\mathbf{b} : \mathbb{R}^n \longrightarrow \mathbb{R}^n \) which sends \(\mathbf{x} \mapsto \text{proj}_\mathbf{b}\mathbf{x} \).

Proposition

\[
\text{proj}_\mathbf{b}\mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b} \mathbf{b}^T \mathbf{x}
\]

Hence \(\text{proj}_\mathbf{b} \) is linear being the linear map associated to the matrix
Projection onto \mathbf{b} is linear

Recall given $\mathbf{b} \in \mathbb{R}^n$ we have a projection map $\text{proj}_\mathbf{b} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ which sends $\mathbf{x} \mapsto \text{proj}_\mathbf{b} \mathbf{x}$.

Proposition

$$\text{proj}_\mathbf{b} \mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b} \mathbf{b}^T \mathbf{x}$$

Hence $\text{proj}_\mathbf{b}$ is linear being the linear map associated to the matrix

$$A = \frac{1}{|\mathbf{b}|^2} \mathbf{b} \mathbf{b}^T.$$
Projection onto b is linear

Recall given $b \in \mathbb{R}^n$ we have a projection map $\text{proj}_b : \mathbb{R}^n \to \mathbb{R}^n$ which sends $x \mapsto \text{proj}_b x$.

Proposition

$$\text{proj}_b x = \frac{1}{|b|^2} bb^T x$$

Hence proj_b is linear being the linear map associated to the matrix

$$A = \frac{1}{|b|^2} bb^T.$$

Proof.

Note

$$Ax = \frac{1}{|b|^2} bb^T x = \frac{1}{|b|^2} b (b \cdot x) = \frac{b \cdot x}{|b|^2} b = \text{proj}_b x$$
Projection onto \mathbf{b} is linear

Recall given $\mathbf{b} \in \mathbb{R}^n$ we have a projection map $\text{proj}_\mathbf{b} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ which sends $\mathbf{x} \mapsto \text{proj}_\mathbf{b}\mathbf{x}$.

Proposition

$$\text{proj}_\mathbf{b}\mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b}\mathbf{b}^T \mathbf{x}$$

Hence $\text{proj}_\mathbf{b}$ is linear being the linear map associated to the matrix

$$A = \frac{1}{|\mathbf{b}|^2} \mathbf{b}\mathbf{b}^T.$$

Proof.

Note

$$A\mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b}\mathbf{b}^T \mathbf{x} = \frac{1}{|\mathbf{b}|^2} \mathbf{b}(\mathbf{b} \cdot \mathbf{x}) = \frac{\mathbf{b} \cdot \mathbf{x}}{|\mathbf{b}|^2} \mathbf{b} = \text{proj}_\mathbf{b}\mathbf{x}$$

from the formula for $\text{proj}_\mathbf{b}\mathbf{x}$ given in MATH1131.
Sample projection

Let \(b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(T = \text{proj}_b : \mathbb{R}^2 \to \mathbb{R}^2 \).

i) Find the matrix \(A \) representing \(T \).

ii) Check your answer by computing the linear map associated to the matrix \(A \) you found.

Solution

Daniel Chan (UNSW)
Sample projection

Example

Let \(b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(T = \text{proj}_b : \mathbb{R}^2 \to \mathbb{R}^2 \).
Sample projection

Example

Let $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $T = \text{proj}_\mathbf{b} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$.

i) Find the matrix A representing T.

Solution

Daniel Chan (UNSW)
Sample projection

Example

Let \(b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(T = \text{proj}_b : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \).

i) Find the matrix \(A \) representing \(T \). ii) Check your answer by computing the linear map associated to the matrix \(A \) you found.

Solution
Let $T: V \to W$ be a linear map.

Proposition-Definition

The kernel of T (written $\ker(T)$ or $\ker(T)$) is the set,

$\ker(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V$.

Let $A \in M_{mn}(\mathbb{R})$ & $T_A: \mathbb{R}^n \to \mathbb{R}^m$ be the associated linear map.

We define $\ker(A) = \ker(T_A) = \{ v \in \mathbb{R}^n \mid Av = 0 \}$.

$\ker(T)$ is a subspace of V.

E.g. Is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in $\ker(2I - I)$?

E.g. Consider the differentiation map $T: \mathbb{P} \to \mathbb{P}$,

$(Tp)(x) = p'(x)$.

$\ker(T) = \{ p \in \mathbb{P} \mid dp/dx = 0 \} = \mathbb{P}_0$, the subspace of all constant polynomials.
Kernels of linear maps

Let $T : V \rightarrow W$ be a linear map.
Kernels of linear maps

Let $T : V \to W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\text{ker } T$) is the set,

$$\ker(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V.$$
Kernels of linear maps

Let $T : V \to W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\ker(T)$) is the set,

$$\ker(T) = \{v \in V \mid T(v) = 0\} \subseteq V.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the assoc linear map.
Kernels of linear maps

Let $T : V \rightarrow W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\ker T$) is the set,

$$\ker(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\ker A = \ker T_A = \{ v \in \mathbb{R}^n : Av = 0 \}.$$
Kernels of linear maps

Let $T : V \to W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\ker T$) is the set,

$$\ker(T) = \{v \in V \mid T(v) = 0\} \subseteq V.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the assoc linear map. We define

$$\ker A = \ker T_A = \{v \in \mathbb{R}^n : Av = 0\}.$$

$\ker T$ is a subspace of V.
Kernels of linear maps

Let $T : V \rightarrow W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\ker T$) is the set,

$$\ker(T) = \{v \in V \mid T(v) = 0\} \subseteq V.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\ker A = \ker T_A = \{v \in \mathbb{R}^n : Av = 0\}.$$

$\ker T$ is a subspace of V.

E.g. Is $\left(\begin{array}{c} 1 \\ 2 \end{array}\right)$ in $\ker(2 \ -1)$?
Kernels of linear maps

Let $T : V \rightarrow W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\ker T$) is the set,

$$\ker(T) = \{ v \in V | T(v) = 0 \} \subseteq V.$$

Let $A \in M_{mn} (\mathbb{R}) \& T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\ker A = \ker T_A = \{ v \in \mathbb{R}^n : Av = 0 \}.$$

$\ker T$ is a subspace of V.

E.g. Is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in $\ker(2 - 1)$?

E.g. Consider the differentiation map $T : \mathbb{P} \rightarrow \mathbb{P}, (Tp)(x) = p'(x)$.

- Daniel Chan (UNSW)
Kernels of linear maps

Let \(T : V \to W \) be a linear map.

Proposition-Definition

The **kernel** of \(T \) (written \(\ker(T) \) or \(\ker T \)) is the set,

\[
\ker(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V.
\]

Let \(A \in M_{mn}(\mathbb{R}) \) & \(T_A : \mathbb{R}^n \to \mathbb{R}^m \) be the assoc linear map. We define \(\ker A = \ker T_A = \{ v \in \mathbb{R}^n : Av = 0 \} \).

\(\ker T \) is a subspace of \(V \).

E.g. Is \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \) in \(\ker(2 \ -1) \)?

E.g. Consider the differentiation map \(T : \mathbb{P} \to \mathbb{P}, (Tp)(x) = p'(x) \).

\(\ker T = \{ p \in \mathbb{P} \mid \frac{dp}{dx} = 0 \} = \mathbb{P}_0 \)
Kernels of linear maps

Let $T : V \rightarrow W$ be a linear map.

Proposition-Definition

The **kernel** of T (written $\ker(T)$ or $\ker T$) is the set,

$$\ker(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\ker A = \ker T_A = \{ v \in \mathbb{R}^n : Av = 0 \}.$$

$\ker T$ is a subspace of V.

E.g. Is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in $\ker(2 \ -1)$?

E.g. Consider the differentiation map $T : \mathbb{P} \rightarrow \mathbb{P}$, $(Tp)(x) = p'(x)$. $\ker T = \{ p \in \mathbb{P} \mid \frac{dp}{dx} = 0 \} = \mathbb{P}_0$ the subspace of all constant polynomials.
Proof that kernels are subspaces

Let $T: V \rightarrow W$ be a linear map. We prove that $\ker T$ is a subspace of V by checking closure axioms.

Proof.

Daniel Chan (UNSW)
Proof that kernels are subspaces

Let $T : V \rightarrow W$ be a linear map. We prove that $\ker T$ is a subspace of V by checking closure axioms.
Proof that kernels are subspaces

Let $T : V \rightarrow W$ be a linear map. We prove that $\ker T$ is a subspace of V by checking closure axioms.

Proof.
Let $T: V \rightarrow W$ be a linear map.

Proposition-Definition

The image of T is the set of all function values of T, that is,

$$\text{im}(T) = \{ w \in W : w = T(v) \text{ for some } v \in V \} \subseteq W.$$

Let $A \in \mathbb{M}_{mn}(\mathbb{R})$ & $T_A: \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the associated linear map.

We define $\text{im}A = \text{im}T_A = \{ b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n \} = \text{col}(A)$.

$\text{im}T$ is a subspace of W.

Remark

Proof omitted, but note we already know $\text{col}(A)$ is a subspace as it is the span of the columns of A.

Daniel Chan (UNSW)
Images of linear maps

Let $T : V \rightarrow W$ be a linear map.
Images of linear maps

Let $T: V \to W$ be a linear map.

Proposition-Definition

The **image** of T is the set of all function values of T, that is,

$$\text{im}(T) = \{ w \in W : w = T(v) \text{ for some } v \in V \} \subseteq W.$$
Let $T : V \to W$ be a linear map.

Proposition-Definition

The **image** of T is the set of all function values of T, that is,

$$\text{im}(T) = \{ w \in W : w = T(v) \text{ for some } v \in V \} \subseteq W.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the assoc linear map.
Let $T : V \rightarrow W$ be a linear map.

Proposition-Definition

The **image** of T is the set of all function values of T, that is,

$$\text{im}(T) = \{w \in W : w = T(v) \text{ for some } v \in V\} \subseteq W.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\text{im} A = \text{im} T_A = \{b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n\} = \text{col}(A).$$
Images of linear maps

Let \(T : V \to W \) be a linear map.

Proposition-Definition

The **image** of \(T \) is the set of all function values of \(T \), that is,

\[
\text{im}(T) = \{ w \in W : w = T(v) \text{ for some } v \in V \} \subseteq W.
\]

Let \(A \in M_{mn}(\mathbb{R}) \) & \(T_A : \mathbb{R}^n \to \mathbb{R}^m \) be the assoc linear map. We define

\[
\text{im } A = \text{im } T_A = \{ b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n \} = \text{col}(A).
\]
Let $T : V \to W$ be a linear map.

Proposition-Definition

The **image** of T is the set of all function values of T, that is,

$$\text{im}(T) = \{w \in W : w = T(v) \text{ for some } v \in V\} \subseteq W.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\text{im } A = \text{im } T_A = \{b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n\} = \text{col}(A).$$

$\text{im } T$ is a subspace of W.

Remark

Proof omitted, but note we already know $\text{col}(A)$ is a subspace as it is the span of the columns of A.

Daniel Chan (UNSW)
Images of linear maps

Let \(T : V \rightarrow W \) be a linear map.

Proposition-Definition

The **image** of \(T \) is the set of all function values of \(T \), that is,

\[
\text{im}(T) = \{ w \in W : w = T(v) \text{ for some } v \in V \} \subseteq W.
\]

Let \(A \in M_{mn}(\mathbb{R}) \) \& \(T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be the assoc linear map. We define

\[
\text{im} A = \text{im} T_A = \{ b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n \} = \text{col}(A).
\]

\(\text{im} T \) is a subspace of \(W \).

Remark Proof omitted, but note we already know \(\text{col}(A) \) is a subspace as it is the span of the columns of \(A \).
Verifying whether or not vectors lie in the image

Example

Let

\[
A = \begin{bmatrix}
1 & 1 \\
0 & 1 \\
1 & 2 \\
\end{bmatrix},
\]

\[
b = \begin{bmatrix}
3 \\
1 \\
3 \\
\end{bmatrix}.
\]

Is \(b \in \text{im} A\)?

Solution

The question amounts to asking: Can we write \(b = Ax\) for some \(x \in \mathbb{R}^2\)?

i.e. Can we solve \(Ax = b\).
Verifying whether or not vectors lie in the image

Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}. \)
Verifying whether or not vectors lie in the image

Example

Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$. Is $b \in \text{im} \ A$?

Solution

The question amounts to asking: Can we write $b = Ax$ for some $x \in \mathbb{R}^2$? i.e. Can we solve $Ax = b$.

Daniel Chan (UNSW) 7.4 Subspaces Associated with Linear Maps
Verifying whether or not vectors lie in the image

Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \), \(b = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \). Is \(b \in \text{im} \ A \)?

Solution

The question amounts to asking: Can we write \(b = Ax \) for some \(x \in \mathbb{R}^2 \)? i.e.
Verifying whether or not vectors lie in the image

Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \), \(b = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \). Is \(b \in \text{im} \ A? \)

Solution

The question amounts to asking: Can we write \(b = Ax \) for some \(x \in \mathbb{R}^2 \)?

i.e. Can we solve \(Ax = b \).
Example

Let \[
\begin{pmatrix}
1 & 2 & 3 & 1 \\
2 & 4 & 7 & 1 \\
1 & 2 & 2 & 2
\end{pmatrix}
\] . Find bases for \(\ker(A) \) and \(\im(A) = \col(A) \).

Solution

\[
\begin{pmatrix}
1 & 2 & 3 & 1 \\
2 & 4 & 7 & 1 \\
1 & 2 & 2 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 3 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 3 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix} = U
\]

The row echelon form \(U \) has first & third columns leading.
Why study kernels & image?

$\text{im} \ T$ tells you about existence of solutions. $T \ x = b$ has a solution iff $b \in \text{im} \ T$.

$\ker \ T$ tells you about uniqueness of solutions. $T \ x = 0$ has unique solution $x = 0$ iff $\ker \ T = 0$.

We’ll see later, that it also tells you about solutions to $T \ x = b$.

Daniel Chan (UNSW) 7.4 Subspaces Associated with Linear Maps
Why study kernels & image?

The image T tells you about the existence of solutions. The equation $Tx = b$ has a solution if and only if $b \in \text{im}(T)$.

The kernel $\ker(T)$ tells you about the uniqueness of solutions. The equation $Tx = 0$ has a unique solution $x = 0$ if and only if $\ker(T) = 0$.

We'll see later, that it also tells you about solutions to $Tx = b$.

Daniel Chan (UNSW) 7.4 Subspaces Associated with Linear Maps
Why study kernels & image?

\[\text{im} T \] tells you about existence of solutions.

\[Tx = b \] has a solution iff \(b \in \text{im} T \).

\[\text{ker} T \] tells you about uniqueness of solutions.

\[Tx = 0 \] has unique solution \(x = 0 \) iff \(\text{ker} T = 0 \).

We’ll see later, that it also tells you about solutions to \(Tx = b \).
Why study kernels & image?

$\text{im} \ T$ tells you about existence of solutions. $Tx = b$ has a solution iff $b \in \text{im} \ T$.

$\text{ker} \ T$ tells you about uniqueness of solutions. $Tx = 0$ has unique solution $x = 0$ iff $\ker \ T = 0$. We'll see later, that it also tells you about solutions to $Tx = b$.
im T tells you about existence of solutions. $T \mathbf{x} = \mathbf{b}$ has a solution iff $\mathbf{b} \in \text{im} T$.

ker T tells you about uniqueness of solutions.
im \(T \) tells you about existence of solutions. \(T \mathbf{x} = \mathbf{b} \) has a solution iff \(\mathbf{b} \in \text{im} \, T \).

ker \(T \) tells you about uniqueness of solutions. \(T \mathbf{x} = \mathbf{0} \) has unique solution \(\mathbf{x} = \mathbf{0} \) iff ker \(T \) = \(\mathbf{0} \).
Why study kernels & image?

\[\text{im} T \text{ tells you about existence of solutions. } Tx = b \text{ has a solution iff } b \in \text{im} T. \]

\[\text{ker} T \text{ tells you about uniqueness of solutions. } Tx = 0 \text{ has unique solution } x = 0 \text{ iff ker} T = 0. \text{ We’ll see later, that it also tells you about solutions to } Tx = b. \]
Rank and Nullity

Let $T: V \rightarrow W$ be a linear map & A a matrix with associated linear map T_A.

Definition

The nullity of T is $\text{nullity}(T) = \dim \ker(T)$.

The nullity of A is $\text{nullity}(A) = \text{nullity}(T_A) = \dim \ker(A)$.

The rank of T is $\text{rank}(T) = \dim \text{im}(T)$.

The rank of A is $\text{rank}(A) = \text{rank}(T_A) = \dim \text{im}(A)$.
Let $T: V \to W$ be a linear map & A a matrix with associated linear map T_A.

Definition

- The **nullity** of T is $\text{nullity}(T) = \dim \ker(T)$.
Let $T : V \rightarrow W$ be a linear map & A a matrix with associated linear map T_A.

Definition

- The **nullity** of T is $\text{nullity}(T) = \dim \ker(T)$.
- The **nullity** of A is $\text{nullity}(A) = \text{nullity}(T_A) = \dim \ker(A)$.
Let $T : V \rightarrow W$ be a linear map & A a matrix with associated linear map T_A.

Definition

- The **nullity** of T is $\text{nullity}(T) = \dim \ker(T)$.
- The **nullity** of A is $\text{nullity}(A) = \text{nullity}(T_A) = \dim \ker(A)$.
- The **rank** of T is $\text{rank}(T) = \dim \text{im}(T)$.
Let $T : V \rightarrow W$ be a linear map & A a matrix with associated linear map T_A.

Definition

- The **nullity** of T is $\text{nullity}(T) = \dim \ker(T)$.
- The **nullity** of A is $\text{nullity}(A) = \text{nullity}(T_A) = \dim \ker(A)$.
- The **rank** of T is $\text{rank}(T) = \dim \text{im}(T)$.
- The **rank** of A is $\text{rank}(A) = \text{rank}(T_A) = \dim \text{im}(A)$.
Example (Continued from the example on p.30)

Let \(A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{bmatrix} \).

Find \(\text{nullity}(A) \) and \(\text{rank}(A) \).

Solution

A basis for \(\text{im} A \) was

Recall a basis for \(\text{ker} A \) had

Note that the basis vectors for \(\text{im} A \) corresponded to the leading columns of the row-echelon form \(U \) whilst the basis vectors for \(\text{ker} A \) corresponded to the non-leading columns.
Example (Continued from the example on p.30)

Let $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix}$.

Find nullity(A) and rank(A).

Solution

A basis for im A was

Recall a basis for ker A had

Note that the basis vectors for im A corresponded to the leading columns of the row-echelon form U whilst the basis vectors for ker A corresponded to the non-leading columns.
Example (Continued from the example on p.30)

Let \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \). Find \(\text{nullity}(A) \) and \(\text{rank}(A) \).

Solution

Recall a basis for \(\text{ker} \ A \) had \(\text{nullity}(A) \) vectors.

Note that the basis vectors for \(\text{im} A \) corresponded to the leading columns of the row-echelon form \(U \) whilst the basis vectors for \(\text{ker} A \) corresponded to the non-leading columns.
Example (Continued from the example on p.30)

Let \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \). Find \(\text{nullity}(A) \) and \(\text{rank}(A) \).

Solution
Example (Continued from the example on p.30)

Let \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \). Find nullity(\(A \)) and rank(\(A \)).

Solution

\(A \) basis for im \(A \) was
Example (Continued from the example on p.30)

Let \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \). Find \(\text{nullity}(A) \) and \(\text{rank}(A) \).

Solution

A basis for \(\text{im} \ A \) was

Recall a basis for \(\text{ker} \ A \) had
Example (Continued from the example on p.30)

Let \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \). Find \(\text{nullity}(A) \) and \(\text{rank}(A) \).

Solution

A basis for \(\text{im} \, A \) was

Recall a basis for \(\text{ker} \, A \) had

Note that the basis vectors for \(\text{im} \, A \) corresponded to the leading columns of the row-echelon form \(U \) whilst the basis vectors for \(\text{ker} \, A \) corresponded to the non-leading columns.
The previous examples illustrate:

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) = \text{no. parameters in the general soln to } A\mathbf{x} = \mathbf{0} = \text{the number of non-leading columns of } U$.

2. $\text{rank}(A) = \text{the maximal no. independent columns of } A = \text{the number of leading columns of } U$.
The previous examples illustrates
The previous examples illustrates

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) =$ no. parameters in the general soln to $A \mathbf{x} = \mathbf{0}$ = the number of non-leading columns of U.

2. $\text{rank}(A) =$ the maximal no. independent columns of A = the number of leading columns of U.

Daniel Chan (UNSW)

7.4 Subspaces Associated with Linear Maps
The previous examples illustrate

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) =$ no. parameters in the general soln to $Ax = 0$

2. $\text{rank}(A) =$ the maximal no. independent columns of $A = $ the number of leading columns of U.
The previous examples illustrate

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) = \text{no. parameters in the general soln to } Ax = 0$

 $= \text{the number of non-leading columns of } U$.

Rank & Nullity from the row-echelon form
The previous examples illustrates

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) = \text{no. parameters in the general soln to } A\mathbf{x} = \mathbf{0} = \text{the number of non-leading columns of } U$.

2. $\text{rank}(A) = \text{the maximal no. independent columns of } A$
The previous examples illustrates

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) = \text{no. parameters in the general soln to } A\mathbf{x} = \mathbf{0}$
 $\quad = \text{the number of non-leading columns of } U$.

2. $\text{rank}(A) = \text{the maximal no. independent columns of } A$
 $\quad = \text{the number of leading columns of } U$.
Our key lemma gives

Theorem (Rank-nullity Theorem for Matrices)

If A is an $m \times n$ matrix, then

$$\text{rank}(A) + \text{nullity}(A) = n.$$

Proof.

This can be used to prove more generally,

Theorem (Rank-nullity Theorem for Linear Maps)

Let $T: V \rightarrow W$ be a linear map with V finite dimensional. Then

$$\text{rank}(T) + \text{nullity}(T) = \dim(V).$$
Our key lemma gives

Theorem (Rank-nullity Theorem for Matrices)

If A is an $m \times n$ matrix, then

\[
\text{rank}(A) + \text{nullity}(A) = n.
\]
Rank-Nullity Theorem

Our key lemma gives

Theorem (Rank-nullity Theorem for Matrices)

If A is an $m \times n$ matrix, then

$$\text{rank}(A) + \text{nullity}(A) = n.$$

Proof.
Our key lemma gives

Theorem (Rank-nullity Theorem for Matrices)

If A is an $m \times n$ matrix, then

$$\text{rank}(A) + \text{nullity}(A) = n.$$

Proof.

This can be used to prove more generally,

Theorem (Rank-nullity Theorem for Linear Maps)

Let $T : V \to W$ be a linear map with V finite dimensional. Then

$$\text{rank}(T) + \text{nullity}(T) = \text{dim}(V).$$
Example of rank-nullity theorem

Example

Let $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the projection map proj_b.
Example of rank-nullity theorem

Example

Let \(b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) and \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be the projection map \(\text{proj}_b \).

Verify the rank-nullity theorem in this case.
Example

Let $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the projection map proj_b.
Verify the rank-nullity theorem in this case.

Solution
Nature of solutions to $Ax = b$

Our key lemma also gives

Theorem

The equation $Ax = b$ has:

1. no solution if $\text{rank} (A) \neq \text{rank} ([A|b])$,
2. at least one solution if $\text{rank} (A) = \text{rank} ([A|b])$.

Further,

i) if $\text{nullity} (A) = 0$, the solution is unique,

ii) if $\text{nullity} (A) = \nu > 0$, then the general solution is of the form

$$x = x_p + \lambda_1 k_1 + \cdots + \lambda_\nu k_\nu$$

for $\lambda_1, \ldots, \lambda_\nu \in \mathbb{R}$, where x_p is any solution of $Ax = b$, and where \{ k_1, \ldots, k_ν \} is a basis for $\ker (A)$.
Nature of solutions to $Ax = b$

Our key lemma also gives

1. no solution if $\text{rank}(A) \neq \text{rank}([A | b])$,
2. at least one solution if $\text{rank}(A) = \text{rank}([A | b])$.

Further,

i) if $\text{nullity}(A) = 0$ the solution is unique,

ii) if $\text{nullity}(A) = \nu > 0$, then the general solution is of the form $x = x_p + \lambda_1 k_1 + \cdots + \lambda_\nu k_\nu$ for $\lambda_1, \ldots, \lambda_\nu \in \mathbb{R}$, where x_p is any solution of $Ax = b$, and where $\{k_1, \ldots, k_\nu\}$ is a basis for $\ker(A)$.

Daniel Chan (UNSW)
Our key lemma also gives

Theorem

The equation \(Ax = b \) *has:*

1. no solution if \(\text{rank}(A) \neq \text{rank}([A|b]) \),
2. at least one solution if \(\text{rank}(A) = \text{rank}([A|b]) \).

Further,

i) if \(\text{nullity}(A) = 0 \) the solution is unique,

ii) if \(\text{nullity}(A) = \nu > 0 \), then the general solution is of the form

\[
 \mathbf{x} = \mathbf{x}_p + \lambda_1 k_1 + \cdots + \lambda_\nu k_\nu
\]

for \(\lambda_1, \ldots, \lambda_\nu \in \mathbb{R} \), where \(\mathbf{x}_p \) is any solution of \(Ax = b \), and where \(\{k_1, \ldots, k_\nu\} \) is a basis for \(\ker(A) \).
Nature of solutions to $Ax = b$

Our key lemma also gives

Theorem

The equation $Ax = b$ has:

1. no solution if $\text{rank}(A) \neq \text{rank}([A|b])$,
Nature of solutions to $Ax = b$

Our key lemma also gives

Theorem

The equation $Ax = b$ has:

1. no solution if $\text{rank}(A) \neq \text{rank}([A|b])$, and
2. at least one solution if $\text{rank}(A) = \text{rank}([A|b])$.
Nature of solutions to $Ax = b$

Our key lemma also gives

Theorem

The equation $Ax = b$ has:

1. no solution if $\text{rank}(A) \neq \text{rank}([A|b])$, and
2. at least one solution if $\text{rank}(A) = \text{rank}([A|b])$. Further,
 i) if $\text{nullity}(A) = 0$ the solution is unique,
Our key lemma also gives

Theorem

The equation \(Ax = b \) has:

1. no solution if \(\text{rank}(A) \neq \text{rank}([A|b]) \), and
2. at least one solution if \(\text{rank}(A) = \text{rank}([A|b]) \). Further,
 - if \(\text{nullity}(A) = 0 \) the solution is unique, whereas,
 - if \(\text{nullity}(A) = \nu > 0 \), then the general solution is of the form
 \[
 x = x_p + \lambda_1 k_1 + \cdots + \lambda_\nu k_\nu \quad \text{for} \ \lambda_1, \ldots, \lambda_\nu \in \mathbb{R},
 \]
 where \(x_p \) is any solution of \(Ax = b \), and where \(\{ k_1, \ldots, k_\nu \} \) is a basis for \(\ker(A) \).
A theoretical application of rank-nullity theorem

Example

Prove that if \(T : \mathbb{R}^n \to \mathbb{R}^n \) is linear, then the following are equivalent.

a) For all \(\mathbf{b} \in \mathbb{R}^n \), there is at least one solution to \(T\mathbf{x} = \mathbf{b} \).

b) For all \(\mathbf{b} \in \mathbb{R}^n \), there is at most one solution to \(T\mathbf{x} = \mathbf{b} \)
Example

Prove that if $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is linear, then the following are equivalent.

a) For all $b \in \mathbb{R}^n$, there is at least one solution to $Tx = b$.

b) For all $b \in \mathbb{R}^n$, there is at most one solution to $Tx = b$.

Solution
In what sense are second order linear differential equations linear?

They involve the linear map $T: \mathbb{C}^2[\mathbb{R}] \rightarrow \mathbb{C}[\mathbb{R}]$, where $\mathbb{C}^2[\mathbb{R}]$ is the vector space of all \mathbb{R}-valued functions with continuous second derivatives and $\mathbb{C}[\mathbb{R}]$ is the vector space of all continuous \mathbb{R}-valued functions—

$$T(y) = ay'' + by' + cy,$$

where $a, b, c \in \mathbb{R}$.

In this case, $\ker(T)$ is the solution set of the ODE

$$a y'' + by' + cy = 0,$$

where $a, b, c \in \mathbb{R}$.

Hence the homogeneous solution is a vector space. Furthermore, it is of dimension 2 i.e. $\text{nullity}(T) = 2$.

We can also apply similar ideas for the solution to $A x = b$ to get the solution to

$$a y'' + by' + cy = f(x),$$

where $a, b, c \in \mathbb{R}$.
In what sense are second order linear differential equations linear?

They involve the linear map $T: C^2\mathbb{R}\rightarrow C\mathbb{R}$, where $C^2\mathbb{R}$ is the vector space of all \mathbb{R}-valued functions with continuous second derivatives and $C\mathbb{R}$ is the vector space of all continuous \mathbb{R}-valued functions.

In this case, $\ker(T)$ is the solution set of the ODE —

$$a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0,$$

where $a, b, c \in \mathbb{R}$.

Hence the homogeneous solution is a vector space. Furthermore, it is of dimension 2 i.e. $\text{nullity}(T) = 2$.

We can also apply similar ideas for the solution to $Ax = b$ to get the solution to $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x)$, where $a, b, c \in \mathbb{R}$.
In what sense are second order linear differential equations linear?

They involve the linear map $T : C^2[\mathbb{R}] \to C[\mathbb{R}]$, where $C^2[\mathbb{R}]$ is the vector space of all \mathbb{R}-valued functions with continuous second derivatives and $C[\mathbb{R}]$ is the vector space of all continuous \mathbb{R}-valued functions—

$$T(y) = a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy,$$

where $a, b, c \in \mathbb{R}$.
In what sense are second order linear differential equations linear?

They involve the linear map $T : C^2[\mathbb{R}] \to C[\mathbb{R}]$, where $C^2[\mathbb{R}]$ is the vector space of all \mathbb{R}-valued functions with continuous second derivatives and $C[\mathbb{R}]$ is the vector space of all continuous \mathbb{R}-valued functions—

$$T(y) = a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy,$$

where $a, b, c \in \mathbb{R}$.

In this case, $\ker(T)$ is the solution set of the ODE —

$$a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0,$$

where $a, b, c \in \mathbb{R}$.

Linear Differential Equations

Q In what sense are second order linear differential equations linear?
A They involve the linear map $T : C^2[\mathbb{R}] \to C[\mathbb{R}]$, where $C^2[\mathbb{R}]$ is the vector space of all \mathbb{R}-valued functions with continuous second derivatives and $C[\mathbb{R}]$ is the vector space of all continuous \mathbb{R}-valued functions—

$$T(y) = a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy,$$
where $a, b, c \in \mathbb{R}$.

In this case, $\ker(T)$ is the solution set of the ODE —

$$a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0,$$
where $a, b, c \in \mathbb{R}$.

Hence the homogeneous solution is a vector space.
In what sense are second order linear differential equations linear?

They involve the linear map \(T : C^2[\mathbb{R}] \to C[\mathbb{R}] \), where \(C^2[\mathbb{R}] \) is the vector space of all \(\mathbb{R} \)-valued functions with continuous second derivatives and \(C[\mathbb{R}] \) is the vector space of all continuous \(\mathbb{R} \)-valued functions—

\[
T(y) = a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy,
\]

where \(a, b, c \in \mathbb{R} \).

In this case, \(\ker(T) \) is the solution set of the ODE —

\[
a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0,
\]

where \(a, b, c \in \mathbb{R} \).

Hence the homogeneous solution is a vector space. Furthermore, it is of dimension 2 i.e. \(\text{nullity}(T) = 2 \).
Q In what sense are second order linear differential equations linear?

A They involve the linear map $T : C^2[\mathbb{R}] \to C[\mathbb{R}]$, where $C^2[\mathbb{R}]$ is the vector space of all \mathbb{R}-valued functions with continuous second derivatives and $C[\mathbb{R}]$ is the vector space of all continuous \mathbb{R}-valued functions—

$$T(y) = a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy,$$

where $a, b, c \in \mathbb{R}$.

In this case, $\ker(T)$ is the solution set of the ODE —

$$a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0,$$

where $a, b, c \in \mathbb{R}$.

Hence the homogeneous solution is a vector space. Furthermore, it is of dimension 2 i.e. $\text{nullity}(T) = 2$. We can also apply similar ideas for the solution to $Ax = b$ to get the solution to

$$a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x),$$

where $a, b, c \in \mathbb{R}$.
Example involving polynomials

To study boundary value problems, it's useful to study linear maps such as the one below.

Example

The function $T : \mathbb{P}_2 \rightarrow \mathbb{R}^2$ is defined by

$$T(p) = (p(1), p'(1))$$

a) Prove that T is linear.

b) Find $\ker(T)$.

c) Use the rank-nullity theorem to find $\text{im}(T)$.

Solution

Daniel Chan (UNSW)
Example involving polynomials

To study boundary value problems, it’s useful to study linear maps such as the one below.

Example

The function $T : P_2 \rightarrow \mathbb{R}^2$ is defined by $T(p) = (p(1), p'(1))$.

a) Prove that T is linear.

b) Find $\ker(T)$.

c) Use the rank-nullity theorem to find $\text{im}(T)$.

Solution

Daniel Chan (UNSW)
Example involving polynomials

To study boundary value problems, it’s useful to study linear maps such as the one below.

Example

The function $T : \mathbb{P}_2 \rightarrow \mathbb{R}^2$ is defined by $Tp = (p(1), p'(1))$

a) Prove that T is linear.

b) Find $\ker(T)$.

c) Use the rank-nullity theorem to find $\text{im}(T)$.

Solution
Solution (Continued)