In this chapter

Matrices were first introduced in the Chinese "Nine Chapters on the Mathematical Art" to solve linear eqns. In the mid-1800s, senior wrangler (see wikipedia) Arthur Cayley studied matrices in their own right and showed how they have an interesting and useful algebra associated to them. We will look at Cayley's ideas and extend vector arithmetic to matrices and even show there is matrix multiplication akin to multiplying numbers. These ideas will not only shed light on solving linear eqns, they will also be useful later when you look at multivariable functions and mappings.
Matrices were first introduced in the Chinese “Nine Chapters on the Mathematical Art” to solve linear eqns.
In this chapter

Matrices were first introduced in the Chinese “Nine Chapters on the Mathematical Art” to solve linear eqns.

In the mid-1800s, senior wrangler (see wikipedia) Arthur Cayley studied matrices in their own right and showed how they have an interesting and useful algebra associated to them.
In this chapter

- Matrices were first introduced in the Chinese “Nine Chapters on the Mathematical Art” to solve linear eqns.
- In the mid-1800s, senior wrangler (see wikipedia) Arthur Cayley studied matrices in their own right and showed how they have an interesting and useful algebra associated to them.
- We will look at Cayley’s ideas and extend vector arithmetic to matrices and even show there is matrix multiplication akin to multiplying numbers.

These ideas will not only shed light on solving linear eqns, they will also be useful later when you look at multivariable functions and mappings.
In this chapter

- Matrices were first introduced in the Chinese “Nine Chapters on the Mathematical Art” to solve linear eqns.
- In the mid-1800s, senior wrangler (see wikipedia) Arthur Cayley studied matrices in their own right and showed how they have an interesting and useful algebra associated to them.
- We will look at Cayley’s ideas and extend vector arithmetic to matrices and even show there is matrix multiplication akin to multiplying numbers.
- These ideas will not only shed light on solving linear eqns,
Matrices were first introduced in the Chinese “Nine Chapters on the Mathematical Art” to solve linear eqns.

In the mid-1800s, senior wrangler (see wikipedia) Arthur Cayley studied matrices in their own right and showed how they have an interesting and useful algebra associated to them.

We will look at Cayley’s ideas and extend vector arithmetic to matrices and even show there is matrix multiplication akin to multiplying numbers.

These ideas will not only shed light on solving linear eqns, they will also be useful later when you look at multivariable functions and mappings.
Some new notation for matrices

Recall an $m \times n$-matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}.$$
Some new notation for matrices

Recall an $m \times n$-matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}.$$

Notation

- We abbreviate the above to $A = (a_{ij})$ and call a_{ij} the ij-th entry of A.
Some new notation for matrices

Recall an $m \times n$-matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}.$$

Notation

- We abbreviate the above to $A = (a_{ij})$ and call a_{ij} the ij-th entry of A.
- Also write $[A]_{ij}$ for a_{ij}.
Some new notation for matrices

Recall an $m \times n$-matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}.$$

Notation

- We abbreviate the above to $A = (a_{ij})$ and call a_{ij} the ij-th entry of A.
- Also write $[A]_{ij}$ for a_{ij}.
- We say the size of A is $m \times n$ because it has
Some new notation for matrices

Recall an $m \times n$-matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}. $$

Notation

- We abbreviate the above to $A = (a_{ij})$ and call a_{ij} the ij-th entry of A.
- Also write $[A]_{ij}$ for a_{ij}.
- We say the size of A is $m \times n$ because it has $M_{mn}(\mathbb{R})$ (resp. $M_{mn}(\mathbb{C})$) denote the set of all $m \times n$-matrices with real entries (resp. complex entries). Sometimes abbreviate to M_{mn} if the scalars are understood or irrelevant.
Some new notation for matrices

Recall an $m \times n$-matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}.$$

Notation

- We abbreviate the above to $A = (a_{ij})$ and call a_{ij} the *ij*-th entry of A.
- Also write $[A]_{ij}$ for a_{ij}.
- We say the size of A is $m \times n$ because it has
- $M_{mn}(\mathbb{R})$ (resp $M_{mn}(\mathbb{C})$) denote the set of all $m \times n$-matrices with real entries (resp complex entries). Sometimes abbreviate to M_{mn} if the scalars are understood or irrelevant.

E.g. A length m column vector is an
Revise matrix-vector product

Let $A = (a_{ij}) = (a_1 | a_2 | ... | a_n) \in M_{mn}$. Then

$$A \begin{bmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + ... + x_n a_n.$$

Alternatively, the i-th entry of $A x$ is $[A x]^i = a_{i1} x_1 + ... + a_{in} x_n = (a_{i1} ... a_{in}) \begin{bmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{bmatrix}$.

Note similarity with dot products.

A induces the linear function $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$: $x \mapsto A x$.

Note: We will write all our results for matrices with real entries, but there are obvious analogues over the complexes.
Let \(A = (a_{ij}) = (a_1 | a_2 | \ldots | a_n) \in M_{mn} \). Then

\[
A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \ldots + x_n a_n.
\]

Alternatively, the \(i \)-th entry of \(A \cdot x \) is

\[
[A \cdot x]_i = a_{i1} x_1 + \ldots + a_{in} x_n = (a_{i1} \ldots a_{in}) \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.
\]

Note similarity with dot products.

\(A \) induces the linear function

\(T: \mathbb{R}^n \rightarrow \mathbb{R}^m: x \mapsto Ax \).

Note: We will write all our results for matrices with real entries, but there are obvious analogues over the complexes.
Let $A = (a_{ij}) = (a_1 | a_2 | \ldots | a_n) \in M_{mn}$. Then

$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 a_1 + x_2 a_2 + \ldots + x_n a_n.$$
Revise matrix-vector product

Let $A = (a_{ij}) = (a_1|a_2| \ldots |a_n) \in M_{mn}$. Then

\[
A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 a_1 + x_2 a_2 + \ldots + x_n a_n.
\]

Alternatively, the i-th entry of Ax is
Let \(A = (a_{ij}) = (a_1 | a_2 | \ldots | a_n) \in \mathbb{M}_{mn} \). Then

\[
A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 a_1 + x_2 a_2 + \ldots + x_n a_n.
\]

Alternatively, the \(i \)-th entry of \(Ax \) is

\[
[Ax]_i = a_{i1} x_1 + \ldots + a_{in} x_n = (a_{i1} \ldots a_{in}) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.
\]

Note similarity with dot products.
Let $A = (a_{ij}) = (a_1 \mid a_2 \mid \ldots \mid a_n) \in M_{mn}$. Then

$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 a_1 + x_2 a_2 + \ldots + x_n a_n.$$

Alternatively, the i-th entry of Ax is

$$[Ax]_i = a_{i1}x_1 + \ldots + a_{in}x_n = (a_{i1} \mid \ldots \mid a_{in}) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Note similarity with dot products.
Revise matrix-vector product

Let $A = (a_{ij}) = (a_1|a_2| \ldots |a_n) \in M_{mn}$. Then

$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1a_1 + x_2a_2 + \ldots + x_na_n.$$

Alternatively, the i-th entry of Ax is

$$[Ax]_i = a_{i1}x_1 + \ldots + a_{in}x_n = \begin{pmatrix} a_{i1} & \ldots & a_{in} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Note similarity with dot products.

A induces the linear function $T : \mathbb{R}^n \rightarrow \mathbb{R}^m : x \mapsto Ax$.

Daniel Chan (UNSW)
Revise matrix-vector product

Let \(A = (a_{ij}) = (a_1|a_2| \ldots |a_n) \in M_{mn} \). Then

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
\cdot
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\cdot
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
= x_1 a_1 + x_2 a_2 + \ldots + x_n a_n.
\]

Alternatively, the \(i \)-th entry of \(Ax \) is

\[
[Ax]_i = a_{i1}x_1 + \ldots + a_{in}x_n = (a_{i1} \ldots a_{in})
\cdot
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}.
\]

Note similarity with dot products.

\(A \) induces the linear function \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m : \mathbf{x} \mapsto Ax \).

Note We will write all our results for matrices with real entries, but there are obvious analogues over the complexes.
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication.

E.g.
\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} +
\begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix} =
\begin{pmatrix}
7 \\
1 & 4 & 4
\end{pmatrix}
\]

In formulas:

Matrix arithmetic

For \(A, B \in M_{mn}(\mathbb{R})\), \(\lambda \in \mathbb{R}\), the entries of \(A + B\), \(\lambda A\) ∈ \(M_{mn}(\mathbb{R})\) are:

\[
[A + B]_{ij} = [A]_{ij} + [B]_{ij} \quad \lambda [A]_{ij} = \lambda [A]_{ij}
\]

N.B. We don't define the sum of matrices of different sizes (just as is the case for vectors).
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication.
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication.

E.g.

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} + \begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix} =
\]

In formulas:

Matrix arithmetic

For \(A, B \in \mathbb{M}^{mn} (\mathbb{R}) \), \(\lambda \in \mathbb{R} \), the entries of \(A + B \), \(\lambda A \in \mathbb{M}^{mn} (\mathbb{R}) \) are

\[
\left[A + B \right]_{ij} = \left[A \right]_{ij} + \left[B \right]_{ij} \\
\left[\lambda A \right]_{ij} = \lambda \left[A \right]_{ij}
\]

N.B. We don’t define the sum of matrices of different sizes (just as is the case for vectors).
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication.

E.g.

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+
\begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix}
=
\begin{pmatrix}
7 \\
0 & 2 & 3
\end{pmatrix}
\]

\[
7 \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
=
\begin{pmatrix}
7
\end{pmatrix}
\]

N.B. We don’t define the sum of matrices of different sizes (just as is the case for vectors).
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication

E.g.

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+ \begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix}
= \begin{pmatrix}
7 \\
2 & -1 & 5
\end{pmatrix}
\]

\[
7 \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
= \begin{pmatrix}
7 \\
0 & 1 & -1
\end{pmatrix}
\]

In formulas

Matrix arithmetic

For \(A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R} \), the entries of \(A + B, \lambda A \in M_{mn}(\mathbb{R}) \) are
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication

E.g.

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+ \begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix}
= \begin{pmatrix}
7 \\
1 & 2 & 3
\end{pmatrix}
\]

In formulas

Matrix arithmetic

For \(A, B \in M_{mn}(\mathbb{R}) \), \(\lambda \in \mathbb{R} \), the entries of \(A + B \), \(\lambda A \in M_{mn}(\mathbb{R}) \) are

- \([A + B]_{ij} = [A]_{ij} + [B]_{ij}\)
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication

E.g.

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+
\begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 & 10 \\
2 & 1 & 4
\end{pmatrix}
\]

In formulas

Matrix arithmetic

For \(A, B \in M_{mn}(\mathbb{R}) , \lambda \in \mathbb{R} \), the entries of \(A + B \), \(\lambda A \in M_{mn}(\mathbb{R}) \) are

- \([A + B]_{ij} = [A]_{ij} + [B]_{ij}\)
- \([\lambda A]_{ij} = \lambda [A]_{ij}\)
Arithmetic of matrices

Just as for vectors, we can define matrix and scalar multiplication to be entry-wise addition and scalar multiplication.

E.g.

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+ \begin{pmatrix}
3 & 4 & 6 \\
2 & -1 & 5
\end{pmatrix} =
\]

\[
7 \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} =
\]

In formulas:

Matrix arithmetic

For \(A, B \in M_{mn}(\mathbb{R}) \), \(\lambda \in \mathbb{R} \), the entries of \(A + B \), \(\lambda A \in M_{mn}(\mathbb{R}) \) are

- \([A + B]_{ij} = [A]_{ij} + [B]_{ij}\)
- \([\lambda A]_{ij} = \lambda [A]_{ij}\)

N.B. We don’t define the sum of matrices of different sizes (just as is the case for vectors).
Linear combinations and subtraction

E.g. We can also form linear combinations of matrices

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+ \begin{pmatrix}
-1 \\
1 & 2 & 3
\end{pmatrix}
= \begin{pmatrix}
0 & 3 & 2 \\
1 & 3 & -2
\end{pmatrix}
\]

Definition

The zero matrix \(0 \) has all entries 0. (There's one for each size \(m \times n \).)

\[A + 0 = A \]

The negative of \(A \in M_{mn} \) is \(-A := (\begin{array}{c}
-1 \\
& 1 & 2 & 3 \\
\end{array}) \).

Hence \(A + (-A) = 0 \).

The difference \(A - B = A + (-B) \) if \(A, B \) have the same size.
Example. We can also form linear combinations of matrices

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+ (-1)
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} =
\]
Linear combinations and subtraction

E.g. We can also form linear combinations of matrices

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} + (-1) \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} =
\]

Definition

The **zero matrix** \(0\) has all entries 0. (There’s one for each size \(m \times n\).)
E.g. We can also form linear combinations of matrices

\[
\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} + (-1) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} =
\]

Definition

- The zero matrix \(\mathbf{0} \) has all entries 0. (There's one for each size \(m \times n \).)
- \(A + \mathbf{0} = A \)
E.g. We can also form linear combinations of matrices

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix}
+ (-1) \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} =
\]

Definition

- The *zero matrix* \(\mathbf{0} \) has all entries 0. (There’s one for each size \(m \times n \).)
 \[A + \mathbf{0} = \]
- The *negative of \(A \in M_{mn} \) is* \(-A := (-1)A \).
Linear combinations and subtraction

E.g. We can also form linear combinations of matrices

\[
\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} + (-1) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} =
\]

Definition

- The zero matrix \(\mathbf{0} \) has all entries 0. (There’s one for each size \(m \times n \).)
 \(A + \mathbf{0} = \)

- The negative of \(A \in M_{mn} \) is \(-A := (-1)A \). Hence \(A + (-A) = \)
E.g. We can also form linear combinations of matrices

\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} + (-1) \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & -1
\end{pmatrix} =
\]

Definition

- The *zero matrix* \(0\) has all entries 0. (There’s one for each size \(m \times n\).)
 \(A + 0 = \)

- The *negative of \(A \in M_{mn}\) is \(-A := (-1)A\). Hence \(A + (-A) = \)

- The *difference* \(A - B = A + (-B)\) if \(A, B\) have the same size.
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$,

$$(A + B)x = Ax + Bx,$$

$$(\lambda A)x = \lambda (Ax).$$

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1 | a_2), B = \ldots$. Recall that in calculus, you define the sum and scalar multiple of functions pointwise, $(f + g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x)$.

The above formulas show that the linear function corresponding to $A + B$ which sends $x \mapsto (A + B)x = Ax + Bx$ is the pointwise sum of the functions corresponding to A and B. The same goes for the scalar multiple.
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$

$(A + B)x = Ax + Bx$.

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1 | a_2), B = \ldots$

Recall that in calculus, you define the sum and scalar multiple of functions pointwise, $(f + g)(x) = f(x) + g(x)$, $(\lambda f)(x) = \lambda f(x)$.

The above formulas show that the linear function corresponding to $A + B$ which sends $x \mapsto (A + B)x = Ax + Bx$ is the pointwise sum of the functions corresponding to A and B.

The same goes for the scalar multiple.
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$

- $(A + B)x = Ax + Bx$.
- $(\lambda A)x = \lambda(Ax)$.

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1 | a_2)$, $B = \ldots$
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$
- $(A + B)x = Ax + Bx$.
- $(\lambda A)x = \lambda(Ax)$.

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1 | a_2), B =$
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$

- $(A + B)x = Ax + Bx$.
- $(\lambda A)x = \lambda(Ax)$.

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1 | a_2), B =$

Upshot Recall that in calculus, you define the sum and scalar multiple of functions pointwise, $(f + g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x)$.
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$

- $(A + B)x = Ax + Bx$.
- $(\lambda A)x = \lambda(Ax)$.

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1 | a_2), B =$

Upshot Recall that in calculus, you define the sum and scalar multiple of functions pointwise, $(f + g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x)$.

The above formulas show that the linear function corresponding to $A + B$ which sends $x \mapsto (A + B)x = Ax + Bx$ is the pointwise sum of the functions corresponding to A and B.
Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, x \in \mathbb{R}^n$

- $(A + B)x = Ax + Bx$.
- $(\lambda A)x = \lambda(Ax)$.

Proof. Suppose $n = 2$ (else need more space) so $A = (a_1|a_2), B =$

Upshot Recall that in calculus, you define the sum and scalar multiple of functions pointwise, $(f + g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x)$.

The above formulas show that the linear function corresponding to $A + B$ which sends $x \mapsto (A + B)x = Ax + Bx$ is the pointwise sum of the functions corresponding to A and B. The same goes for the scalar multiple.
Mappings and matrix arithmetic

E.g. The mapping $\mathbb{R}^2 \to \mathbb{R}^2$ corresponding to the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

E.g. The mapping $\mathbb{R}^2 \to \mathbb{R}^2$ corresponding to the matrix $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

E.g. The mapping $\mathbb{R}^2 \to \mathbb{R}^2$ corresponding to the matrix $1/2 \left(A + B \right) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
E.g. The mapping $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ corresponding to the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
E.g. The mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ corresponding to the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

E.g. The mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ corresponding to the matrix $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Mappings and matrix arithmetic

E.g. The mapping \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \) corresponding to the matrix \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

E.g. The mapping \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \) corresponding to the matrix \(B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

E.g. The mapping \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \) corresponding to the matrix \(\frac{1}{2}(A + B) = \)
Basic properties of matrix arithmetic

Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

$$\lambda (\mu A) = (\lambda \mu) A$$

$$(\lambda + \mu) A = \lambda (A + B)$$

Proof.

Just as for vectors e.g.
Basic properties of matrix arithmetic

Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

Proof. Just as for vectors e.g.
Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

- $\lambda(\mu A) = (\lambda \mu)A$.

Proof. Just as for vectors e.g.
Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

- $\lambda(\mu A) = (\lambda \mu) A$.
- $(\lambda + \mu) A =$
Basic properties of matrix arithmetic

Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

- $\lambda(\mu A) = (\lambda \mu) A$.
- $(\lambda + \mu) A =$
- $\lambda(A + B) =$
Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

- $\lambda(\mu A) = (\lambda \mu) A$.
- $(\lambda + \mu) A =$
- $\lambda(A + B) =$

Proof. Just as for vectors e.g.
Matrix multiplication

Let $A \in M_{mn}$, $B = \begin{pmatrix} b_1 & \ldots & b_p \end{pmatrix} \in M_{np}$. We define the matrix product AB to be the $m \times p$-matrix $AB = \begin{pmatrix} A \cdot b_1 & \ldots & A \cdot b_p \end{pmatrix}$.

E.g. $\begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix} \left(\begin{array}{c} 1 \\ -1 \\ 1 \\ 2 \end{array} \right)$

Alternatively, the ij-th entry of AB comes from “zipping up” the i-th row of A with the j-th column of B:

\[(AB)_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}. \]

Warning: The product AB is only defined when no. columns $A =$ no. rows B.

Daniel Chan (UNSW)
Chapter 5: Matrices
Semester 1 2015
Let $A \in M_{mn}$, $B = (b_1 \mid \ldots \mid b_p) \in M_{np}$.

We define the matrix product AB to be the $m \times p$-matrix $AB = (A b_1 \mid \ldots \mid A b_p)$.

E.g.

$$\begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 4 & -4 \end{pmatrix}$$

Alternatively, the ij-th entry of AB comes from "zipping up" the i-th row of A with the j-th column of B: i.e. if $A = (a_{ij})$, $B = (b_{ij})$,

$$[AB]_{ij} = \begin{pmatrix} a_{i1} \\ \vdots \\ a_{in} \end{pmatrix} \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_{i1} b_{1j} + \ldots + a_{in} b_{nj} = \sum_{l=1}^{n} a_{il} b_{lj}.$$

Warning: The product AB is only defined when the number of columns of A equals the number of rows of B.

Daniel Chan (UNSW)
Chapter 5: Matrices
Semester 1 2015
Matrix multiplication

Let $A \in M_{mn}, B = (b_1| \ldots | b_p) \in M_{np}$. We define the matrix product AB to be the $m \times p$-matrix

$$AB = (Ab_1| \ldots | Ab_p).$$
Let $A \in M_{mn}, B = (b_1 \mid \ldots \mid b_p) \in M_{np}$. We define the matrix product AB to be the $m \times p$-matrix

$$AB = (Ab_1 \mid \ldots \mid Ab_p).$$

E.g. \[
\begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}
\]
Let $A \in M_{mn}, B = (b_1 | \ldots | b_p) \in M_{np}$. We define the matrix product AB to be the $m \times p$-matrix

$$AB = (Ab_1 | \ldots | Ab_p).$$

E.g.

$$\begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & \end{pmatrix}$$

Alternatively, the ij-th entry of AB comes from “zipping up” the ith row of A with the jth column of B:

$$AB = (Ab_1 | \ldots | Ab_p).$$
Matrix multiplication

Let $A \in M_{mn}, B = (b_1|\ldots|b_p) \in M_{np}$. We define the matrix product AB to be the $m \times p$-matrix

$$AB = (Ab_1|\ldots|Ab_p).$$

E.g. \[
\begin{pmatrix}
0 & 1 \\
2 & 3 \\
4 & 5 \\
\end{pmatrix}
\begin{pmatrix}
1 & -1 \\
1 & 2 \\
\end{pmatrix}
\]

Alternatively, the ij-th entry of AB comes from “zipping up” the ith row of A with the jth column of B: i.e. if $A = (a_{ij}), B = (b_{ij})$

$$[AB]_{ij} = (a_{i1} \ldots a_{in}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_{i1}b_{1j} + \ldots + a_{in}b_{nj} = \sum_{l=1}^{n} a_{il}b_{lj}.$$
Matrix multiplication

Let $A \in M_{mn}$, $B = (b_1 | \ldots | b_p) \in M_{np}$. We define the matrix product AB to be the $m \times p$-matrix

$$AB = (Ab_1 | \ldots | Ab_p).$$

E.g.

\[
\begin{pmatrix}
0 & 1 \\
2 & 3 \\
4 & 5
\end{pmatrix}
\begin{pmatrix}
1 & -1 \\
1 & 2
\end{pmatrix}
\]

Alternatively, the ij-th entry of AB comes from “zipping up” the ith row of A with the jth column of B: i.e. if $A = (a_{ij})$, $B = (b_{ij})$

$$[AB]_{ij} = (a_{i1} \ldots a_{in}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_{i1}b_{1j} + \ldots + a_{in}b_{nj} = \sum_{l=1}^{n} a_{il}b_{lj}.$$

Warning The product AB is only defined when no. columns $A = \text{no. rows } B$.
Associative law

Associative law of matrix multiplication

Let \(A \in \mathbb{M}_{mn} \), \(B = (b_1 | ... | b_p) \in \mathbb{M}_{np} \), \(C = (c_1 | ... | c_q) \in \mathbb{M}_{pq} \).

Then \((AB)C = A(BC)\).

Proof.
It suffices to show this for \(C = c = \begin{pmatrix} c_1 \\ ... \\ c_p \end{pmatrix} \) for assuming this case we see

\((AB)c = \begin{pmatrix} (AB)c_1 \\ ... \\ (AB)c_p \end{pmatrix} =
\begin{pmatrix} A(Bc_1) \\ ... \\ A(Bc_p) \end{pmatrix} = A(BC)\).

If \(C = c \) then

\((AB)c = (A b_1 | ... | A b_p) c = c_1 A b_1 + ... + c_p A b_p = A (c_1 b_1 + ... + c_p b_p) = A(BC)\).
Associative law of matrix multiplication

Let $A \in M_{mn}$, $B = (b_1 \ldots b_p) \in M_{np}$, $C = (c_1 \ldots c_q) \in M_{pq}$.

Then $(AB)C = A(BC)$.

Proof. It suffices to show this for $C = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix}$ for assuming this case we see

$$(AB)c_1 = (A(b_1|\ldots|b_p))c_1 = (A(c_1))c_1 + \ldots + (A(c_p))c_p = A(c_1b_1 + \ldots + c_pb_p) = A(BC).$$
Let $A \in M_{mn}$, $B = (b_1 \ldots | b_p) \in M_{np}$, $C = (c_1 \ldots | c_q) \in M_{pq}$. Then $(AB)C = A(BC)$.

Proof. It suffices show this for $C = c = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix}$ for assuming this case we see

$(AB)c = (AB)c_1 + \ldots + (AB)c_p = A(Bc_1 + \ldots + Bc_p) = A(BC)$.

Daniel Chan (UNSW)
Assessoiative law

Associative law of matrix multiplication

Let \(A \in M_{mn}, B = (b_1| \ldots |b_p) \in M_{np}, C = (c_1| \ldots |c_q) \in M_{pq}. \) Then \((AB)C = A(BC)\).

Proof. It suffices show this for \(C = c = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix} \) for assuming this case we see
Associative law of matrix multiplication

Let \(A \in M_{mn}, B = (b_1 | \ldots | b_p) \in M_{np}, C = (c_1 | \ldots | c_q) \in M_{pq} \). Then \((AB)C = A(BC)\).

Proof. It suffices show this for \(C = c = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix} \) for assuming this case we see

\[
(AB)C = ((AB)c_1 | \ldots | (AB)c_q) = (A(Bc_1) | \ldots | A(Bc_q))
\]

\[
= A((Bc_1) | \ldots | (Bc_q)) = A(BC).
\]
Associative law of matrix multiplication

Let $A \in M_{mn}, B = (b_1| \ldots | b_p) \in M_{np}, C = (c_1| \ldots | c_q) \in M_{pq}$. Then $(AB)C = A(BC)$.

Proof. It suffices show this for $C = c = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix}$ for assuming this case we see

$$(AB)C = ((AB)c_1| \ldots |(AB)c_q) = (A(Bc_1)| \ldots |A(Bc_q))$$

$$= A((Bc_1)| \ldots |(Bc_q)) = A(BC).$$

If $C = c$ then

$$(AB)c = (Ab_1| \ldots |Ab_p)c = c_1Ab_1 + \ldots + c_pAb_p = A(c_1b_1 + \ldots + c_pb_p) = A(Bc).$$
Functional interpretation of the associative law

The associative law says the function associated to AB which maps $x \mapsto (AB)(x) = A(Bx)$ is the composite $x \mapsto Bx \mapsto A(Bx)$ of the linear maps associated to A and B.

E.g. Recall that $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to reflection about the x-axis.

Let's check $(1 0)(1 0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Remark: The definition of matrix multiplication was designed so that it reflects the composition of linear maps.
The associative law says the function associated to AB which maps $x \mapsto (AB)x = A(Bx)$
The associative law says the function associated to AB which maps $x \mapsto (AB)x = A(Bx)$ is the composite $x \mapsto Bx \mapsto A(Bx)$ of the linear maps associated to A and B.
The associative law says the function associated to AB which maps $x \mapsto (AB)x = A(Bx)$ is the composite $x \mapsto Bx \mapsto A(Bx)$ of the linear maps associated to A and B.

E.g. Recall that $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to reflection about the x-axis.
The associative law says the function associated to AB which maps $x \mapsto (AB)x = A(Bx)$ is the composite $x \mapsto Bx \mapsto A(Bx)$ of the linear maps associated to A and B.

E.g. Recall that $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to reflection about the x-axis. The functional viewpoint shows that B^2 corresponds to the mapping
Functional interpretation of the associative law

The associative law says the function associated to AB which maps $x \mapsto (AB)x = A(Bx)$ is the composite $x \mapsto Bx \mapsto A(Bx)$ of the linear maps associated to A and B.

E.g. Recall that $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to reflection about the x-axis. The functional viewpoint shows that B^2 corresponds to the mapping

Let's check $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} =$
The associative law says the function associated to AB which maps $x \mapsto (AB)x = A(Bx)$ is the composite $x \mapsto Bx \mapsto A(Bx)$ of the linear maps associated to A and B.

E.g. Recall that $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to reflection about the x-axis. The functional viewpoint shows that B^2 corresponds to the mapping

Let’s check $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} =$

Remark The definition of matrix multiplication was designed so that it reflects the composition of linear maps.
Distributive laws & noncommutativity

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.
3. $(\lambda A)B = \lambda(AB) = A(\lambda B)$.

Proof. Easy ex similar to distributive law we proved for matrix-vector product.

Noncommutativity

Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Hence $(A + B)^2 = \ldots$
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar.
Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$
2. $(A + B)C = AC + BC$
3. $(\lambda A)B = \lambda (AB) = A(\lambda B)$

Proof. Easy ex similar to distributive law we proved for matrix-vector product.

Noncommutativity

Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Hence $(A + B)^2 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.

Proof. Easy exercise similar to the distributive law we proved for matrix-vector product.

Noncommutativity

Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g.

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Hence $(A + B)^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = A^2$.
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.

Noncommutativity

Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Hence $(A + B)^2 = A^2 + 2AB + B^2$.
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.
3. $(\lambda A)B = \lambda(AB) = A(\lambda B)$.

Proof. Easy exercise similar to the distributive law we proved for matrix-vector product.

Noncommutativity

Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Hence $(A + B)^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^2 + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.
3. $(\lambda A)B = \lambda(AB) = A(\lambda B)$.

Proof. Easy ex similar to distributive law we proved for matrix-vector product.
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.
3. $(\lambda A)B = \lambda(AB) = A(\lambda B)$.

Proof. Easy ex similar to distributive law we proved for matrix-vector product.

Noncommutativity Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.
3. $(\lambda A)B = \lambda(AB) = A(\lambda B)$.

Proof. Easy ex similar to distributive law we proved for matrix-vector product.

Noncommutativity

Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

1. $A(B + C) = AB + AC$.
2. $(A + B)C = AC + BC$.
3. $(\lambda A)B = \lambda(AB) = A(\lambda B)$.

Proof. Easy ex similar to distributive law we proved for matrix-vector product.

Noncommutativity Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Hence $(A + B)^2 = \ldots$
A matrix is said to be *square* if its no. rows = no. columns.
A matrix is said to be *square* if its no. rows = no. columns. The *diagonal* of a square matrix \(A = (a_{ij}) \) consists of the entries \(a_{ii} \).
A matrix is said to be *square* if its no. rows = no. columns. The *diagonal* of a square matrix $A = (a_{ij})$ consists of the entries a_{ii}. The $n \times n$-identity matrix I, is the matrix with 1's on the diagonal and 0's elsewhere.
A matrix is said to be *square* if its no. rows = no. columns. The *diagonal* of a square matrix $A = (a_{ij})$ consists of the entries a_{ii}. The $n \times n$-identity matrix I, is the matrix with 1's on the diagonal and 0's elsewhere.

E.g.

Formula

$IA = A, BI = B$ whenever the products are defined.
A matrix is said to be *square* if its no. rows = no. columns. The *diagonal* of a square matrix $A = (a_{ij})$ consists of the entries a_{ii}. The $n \times n$-identity matrix I, is the matrix with 1's on the diagonal and 0’s elsewhere.

E.g.

Formula

$IA = A, BI = B$ whenever the products are defined.

Proof. Just multiply matrices. We'll check here
A matrix is said to be *square* if its no. rows = no. columns. The *diagonal* of a square matrix $A = (a_{ij})$ consists of the entries a_{ii}. The $n \times n$-*identity matrix* I, is the matrix with 1’s on the diagonal and 0’s elsewhere.

E.g.

Formula

$I A = A, B I = B$ whenever the products are defined.

Proof. Just multiply matrices. We'll check here

Upshot In particular, we see the linear function associated to I is the identity map $x \mapsto x$.
The transpose of an \(m \times n \)-matrix \(A \), is the \(n \times m \)-matrix \(A^T \) gotten by turning all the rows of \(A \) into columns (or equivalently, flipping the matrix about the row=column diagonal).

E.g. \[
\begin{pmatrix}
2 & 5 & 1 \\
1 & 3 & 2 \\
\end{pmatrix}
\]
\(\rightarrow \)

More formally, the entries of \(A^T \) are given by \[
A^T_{ij} = A_{ji}.
\]

Formulas

Let \(A, B \) be matrices & \(\lambda \) a scalar. The following hold when one side is defined.

1) \((A^T)^T = A \)

2) \((A + B)^T = A^T + B^T \)

3) \((\lambda A)^T = \lambda A^T \)

4) \((AB)^T = B^T A^T \)

Proof.

1) & 2) are easy and say the function \(A \mapsto A^T \) is linear. For 3) \[
\left[(B^T A^T)\right]_{ij} = \sum_l [B^T]_{il} [A^T]_{lj} = \sum_l [B]_{li} [A]_{jl} = \left[(\lambda A)^T\right]_{ij}.
\]

5) Daniel Chan (UNSW)

Chapter 5: Matrices
The *transpose* of an $m \times n$-matrix A, is the $n \times m$-matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row $i = \text{column } j$ diagonal).
The transpose of an $m \times n$-matrix A, is the $n \times m$-matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row i = column j diagonal).

E.g. \[
\begin{pmatrix}
2 & 5 & 1 \\
1 & 3 & 2
\end{pmatrix}^T
\]

More formally, the entries of A^T are given by $[A^T]_{ij} = [A]_{ji}$.

Formulas

Let A, B be matrices & λ a scalar. The following hold when one side is defined.

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$
3. $(\lambda A)^T = \lambda A^T$
4. $(AB)^T = B^T A^T$

Proof. 1) & 2) are easy and say the function $A \mapsto \rightarrow A^T$ is linear. For 3) $[(B^T A^T)]_{ij} = \sum_l [B^T]_{il} [A^T]_{lj} = \sum_l [B]_{li} [A]_{jl}$.
The *transpose* of an $m \times n$-matrix A, is the $n \times m$-matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row $i =$ column j diagonal).

E.g. \[
\begin{pmatrix} 2 & 5 & 1 \\ 1 & 3 & 2 \end{pmatrix}^T = \]

More formally, the entries of A^T are given by $[A^T]_{ij} = [A]_{ji}$.

Formulas

Let A, B be matrices & λ a scalar. The following hold when one side is defined.

1. $(A^T)^T = A$
The transpose of an $m \times n$-matrix A, is the $n \times m$-matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row $i = \text{column } j$ diagonal).

E.g. $\begin{pmatrix} 2 & 5 & 1 \\ 1 & 3 & 2 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 \\ 5 & 3 \\ 1 & 2 \end{pmatrix}$

More formally, the entries of A^T are given by $[A^T]_{ij} = [A]_{ji}$.

Formulas

Let A, B be matrices & λ a scalar. The following hold when one side is defined.

1. $(A^T)^T = A$

2. $(A + B)^T = A^T + B^T$, $(\lambda A)^T = \lambda A^T$
The transpose of an $m \times n$-matrix A, is the $n \times m$-matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row $i = $ column j diagonal).

E.g. \[
\begin{pmatrix}
2 & 5 & 1 \\
1 & 3 & 2
\end{pmatrix}^T
= \begin{pmatrix}
2 & 1 \\
5 & 3 \\
1 & 2
\end{pmatrix}
\]

More formally, the entries of A^T are given by $[A^T]_{ij} = [A]_{ji}$.

Formulas

Let A, B be matrices & λ a scalar. The following hold when one side is defined.

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$, \hspace{1cm} $(\lambda A)^T = \lambda A^T$
3. $(AB)^T = B^T A^T$.

Proof. 1) & 2) are easy and say the function $A \mapsto A^T$ is linear. For 3)

\[
[(B^TA^T)]_{ij} = \sum_l [B^T]_{il}[A^T]_{lj} = \sum_l [B]_{li}[A]_{lj} = [(AB)]_{ij}
\]
The transpose of an $m \times n$-matrix A, is the $n \times m$-matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row $i =$ column j diagonal).

E.g. \[
\begin{pmatrix}
2 & 5 & 1 \\
1 & 3 & 2
\end{pmatrix}^T
\]

More formally, the entries of A^T are given by $[A^T]_{ij} = [A]_{ji}$.

Formulas

Let A, B be matrices & λ a scalar. The following hold when one side is defined.

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$, \hfill $(\lambda A)^T = \lambda A^T$
3. $(AB)^T = B^T A^T$.

Proof. 1) & 2) are easy and say the function $A \mapsto A^T$ is linear. For 3)

\[
[(B^T A^T)]_{ij} = \sum_l [B^T]_{il} [A^T]_{lj} = \sum_l [B]_{li} [A]_{jl} =
\]
Miscellaneous tidbits involving transpose

Relation with dot product

Let \(a, b \in \mathbb{R}^n \). Then though \(ab \) is not defined we can define \(a^T b = (a_1 \ldots a_n)(b_1 \ldots b_n) = a_1b_1 + \ldots + a_nb_n = a \cdot b \).

Symmetric matrices

A square matrix is symmetric if \(A^T = A \) and anti-symmetric if \(A^T = -A \). (Why is square in the definition?)

E.g. \(bb^T \in M_{nn} \) is symmetric since

In fact if \(\|b\| = 1 \), then the linear function \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) associated to \(bb^T \) is projection onto \(b \) for it sends \(x \mapsto bb^T x \).
Relation with dot product

Let \(a, b \in \mathbb{R}^n \). Then though \(ab \) is not defined we can define
\[
 a^T b = \left(a_1 \ldots a_n \right) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = a \cdot b.
\]

Symmetric matrices

A square matrix is symmetric if \(A^T = A \) and anti-symmetric if \(A^T = -A \). (Why is square in the defn?)

E.g. \(bb^T \in \mathbb{M}_{n \times n} \) is symmetric since

In fact if \(|b| = 1 \), then the linear function \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) associated to \(bb^T \) is projection onto \(b \) for it sends \(x \mapsto bb^Tx \).
 Relation with dot product

Let \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n \).

\[
\mathbf{a}^T \mathbf{b} = (a_1, \ldots, a_n)(b_1, \ldots, b_n) = a_1 b_1 + \cdots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.
\]
Relation with dot product
Let $a, b \in \mathbb{R}^n$. Then though ab is not defined we can define

$$a^T b = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = a \cdot b.$$
Relation with dot product

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Then though $\mathbf{a}\mathbf{b}$ is not defined we can define

$$\mathbf{a}^T \mathbf{b} = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\
\vdots \\
b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.$$
Miscellaneous tidbits involving transpose

Relation with dot product
Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Then though $\mathbf{a} \mathbf{b}$ is not defined we can define

$$\mathbf{a}^T \mathbf{b} = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.$$

Symmetric matrices
A square matrix is symmetric if $A^T = A$ and anti-symmetric if $A^T = -A$
Miscellaneous tidbits involving transpose

Relation with dot product
Let \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n \). Then though \(\mathbf{a}\mathbf{b} \) is not defined we can define

\[
\mathbf{a}^T \mathbf{b} = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.
\]

Symmetric matrices
A square matrix is *symmetric* if \(\mathbf{A}^T = \mathbf{A} \) and *anti-symmetric* if \(\mathbf{A}^T = -\mathbf{A} \) (Why is square in the defn?).
Relation with dot product
Let \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n \). Then though \(\mathbf{a}\mathbf{b} \) is not defined we can define

\[
\mathbf{a}^T \mathbf{b} = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.
\]

Symmetric matrices
A square matrix is symmetric if \(A^T = A \) and anti-symmetric if \(A^T = -A \) (Why is square in the defn?).

E.g. \(\mathbf{bb}^T \in M_{nn} \) is symmetric since
Relation with dot product

Let \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n\). Then though \(\mathbf{a}\mathbf{b}\) is not defined we can define

\[
\mathbf{a}^T \mathbf{b} = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.
\]

Symmetric matrices

A square matrix is *symmetric* if \(A^T = A\) and *anti-symmetric* if \(A^T = -A\) (Why is square in the defn?).

E.g. \(\mathbf{b}\mathbf{b}^T \in M_{nn}\) is symmetric since

In fact if \(|\mathbf{b}| = 1\), then the linear function \(\mathbb{R}^n \rightarrow \mathbb{R}^n\) associated to \(\mathbf{b}\mathbf{b}^T\) is projection onto \(\mathbf{b}\)
Miscellaneous tidbits involving transpose

Relation with dot product
Let \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n \). Then though \(\mathbf{a} \mathbf{b} \) is not defined we can define

\[
\mathbf{a}^T \mathbf{b} = (a_1 \ldots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + \ldots + a_n b_n = \mathbf{a} \cdot \mathbf{b}.
\]

Symmetric matrices
A square matrix is symmetric if \(\mathbf{A}^T = \mathbf{A} \) and anti-symmetric if \(\mathbf{A}^T = -\mathbf{A} \) (Why is square in the defn?).

E.g. \(\mathbf{bb}^T \in M_{nn} \) is symmetric since

In fact if \(|\mathbf{b}| = 1 \), then the linear function \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) associated to \(\mathbf{bb}^T \) is projection onto \(\mathbf{b} \) for it sends

\[
\mathbf{x} \mapsto \mathbf{bb}^T \mathbf{x} =
\]
Matrix Inverse

To attempt matrix "division" we need the matrix inverse.

A matrix W is an inverse for the matrix A if $AW = WA = I$.

If such a matrix exists we say that A is invertible.

A matrix can have at most one inverse, denoted A^{-1}.

Proof. If W' is another inverse then $E.g. A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$.
To attempt matrix “division” we need the matrix inverse.
To attempt matrix “division” we need the matrix inverse.

Inverse

A matrix \(W \) is an *inverse* for the matrix \(A \) if

\[
AW = WA = I
\]
To attempt matrix “division” we need the matrix inverse.

Inverse

A matrix W is an *inverse* for the matrix A if

$$AW = WA = I$$
To attempt matrix “division” we need the matrix inverse.

Inverse

A matrix W is an *inverse* for the matrix A if

$$AW = WA = I$$

If such a matrix exists we say that A is *invertible*.
To attempt matrix “division” we need the matrix inverse.

Inverse

A matrix W is an *inverse* for the matrix A if

$$AW = WA = I$$

If such a matrix exists we say that A is *invertible*. A matrix can have at most one inverse, denoted A^{-1}.
To attempt matrix “division” we need the matrix inverse.

Inverse

A matrix W is an *inverse* for the matrix A if

$$AW = WA = I$$

If such a matrix exists we say that A is *invertible*. A matrix can have at most one inverse, denoted A^{-1}.

Proof. If W' is another inverse then
To attempt matrix “division” we need the matrix inverse.

Inverse

A matrix W is an *inverse* for the matrix A if

$$AW = WA = I$$

If such a matrix exists we say that A is *invertible*. A matrix can have at most one inverse, denoted A^{-1}.

Proof. If W' is another inverse then

E.g. $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$
Proposition
Let $A \in \mathbb{M}_{mn}$ be an invertible matrix. Then for any $b \in \mathbb{R}^n$ the equation $Ax = b$ has $x = A^{-1}b$ as its unique solution.

Proof. $x = A^{-1}b$ is a solution since $A^{-1}b = b$.\Rightarrow It is the only possible solution since $Ax = b$.

Corollary
Any invertible matrix $A \in \mathbb{M}_{mn}$ is square.

Proof. The inverse $W = A^{-1}$ must be $n \times m$ for AW, WA to be defined. $A^{-1}b = 0$ has a unique solution $\Rightarrow m$.

Daniel Chan (UNSW)
Chapter 5: Matrices
Semester 1 2015
Proposition

Let $A \in M_{mn}$ be an invertible matrix.

Proof. $x = A^{-1}b$ is a solution since

$Ax = b = \Rightarrow$

Corollary

Any invertible matrix $A \in M_{mn}$ is square.

Proof. The inverse $W = A^{-1}$ must be $n \times m$ for AW, WA to be defined.

$Ax = 0$ has a unique solution $\Rightarrow m$
Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $b \in \mathbb{R}^n$ the eqn $Ax = b$ has $x = A^{-1}b$ as its unique soln.
Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $b \in \mathbb{R}^n$ the eqn $Ax = b$ has $x = A^{-1}b$ as its unique soln.

Proof. $x = A^{-1}b$ is a soln since

It is the only possible soln since $Ax = b = \Rightarrow$

Corollary

Any invertible matrix $A \in M_{mn}$ is square.

Proof. The inverse $W = A^{-1}$ must be $n \times m$ for AW, WA to be defined.

$Ax = 0$ has a unique soln $= \Rightarrow m$
Inverses and solving $A\mathbf{x} = \mathbf{b}$

Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $\mathbf{b} \in \mathbb{R}^n$ the eqn $A\mathbf{x} = \mathbf{b}$ has $\mathbf{x} = A^{-1}\mathbf{b}$ as its unique soln.

Proof. $\mathbf{x} = A^{-1}\mathbf{b}$ is a soln since

It is the only possible soln since $A\mathbf{x} = \mathbf{b}$ \implies
Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $b \in \mathbb{R}^n$ the eqn $Ax = b$ has $x = A^{-1}b$ as its unique soln.

Proof. $x = A^{-1}b$ is a soln since
It is the only possible soln since $Ax = b \implies$

Corollary Any invertible matrix $A \in M_{mn}$ is square.
Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $b \in \mathbb{R}^n$ the eqn $Ax = b$ has $x = A^{-1}b$ as its unique soln.

Proof. $x = A^{-1}b$ is a soln since
It is the only possible soln since $Ax = b \implies$

Corollary Any invertible matrix $A \in M_{mn}$ is square.
Proof. The inverse $W = A^{-1}$ must be $n \times m$ for AW, WA to be defined.
Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $b \in \mathbb{R}^n$ the eqn $Ax = b$ has $x = A^{-1}b$ as its unique soln.

Proof. $x = A^{-1}b$ is a soln since
It is the only possible soln since $Ax = b \implies$

Corollary Any invertible matrix $A \in M_{mn}$ is square.

Proof. The inverse $W = A^{-1}$ must be $n \times m$ for AW, WA to be defined.
$Ax = 0$ has a unique soln $\implies m$
Formulas involving matrix inverses

Let $A, B \in \mathbb{M}_{nn}$ be invertible.

1. A^{-1} is invertible & $(A^{-1})^{-1} = A$.

2. AB is invertible & $(AB)^{-1} = B^{-1}A^{-1}$.

3. A^T is invertible & $(A^T)^{-1} = (A^{-1})^T$.

Proof. All easy e.g.
Formulas involving matrix inverses

<table>
<thead>
<tr>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $A, B \in M_{nn}$ be invertible.</td>
</tr>
</tbody>
</table>

Proof. All easy e.g.

E.g. Simplify $\left(ABA^{-1}\right)^{-2}$.
Formulas involving matrix inverses

Formula

Let $A, B \in M_{nn}$ be invertible.

1. A^{-1} is invertible & $(A^{-1})^{-1} =$
Formulas involving matrix inverses

Let \(A, B \in M_{nn} \) be invertible.

1. \(A^{-1} \) is invertible & \((A^{-1})^{-1} = \)
2. \(AB \) is invertible & \((AB)^{-1} = B^{-1}A^{-1} \).
Formulas involving matrix inverses

Let $A, B \in M_{nn}$ be invertible.

1. A^{-1} is invertible & $(A^{-1})^{-1} = A$.
2. AB is invertible & $(AB)^{-1} = B^{-1}A^{-1}$.
3. A^T is invertible & $(A^T)^{-1} = (A^{-1})^T$.

Proof. All easy e.g.
Formulas involving matrix inverses

Formula

Let \(A, B \in M_{nn} \) be invertible.

1. \(A^{-1} \) is invertible & \((A^{-1})^{-1} = A\)
2. \(AB \) is invertible & \((AB)^{-1} = B^{-1}A^{-1}\).
3. \(A^T \) is invertible & \((A^T)^{-1} = (A^{-1})^T\).

Proof. All easy e.g.
Let $A, B \in M_{nn}$ be invertible.

1. A^{-1} is invertible & $(A^{-1})^{-1} = A$

2. AB is invertible & $(AB)^{-1} = B^{-1}A^{-1}$.

3. A^T is invertible & $(A^T)^{-1} = (A^{-1})^T$.

Proof. All easy e.g.

E.g. Simplify $(ABA^{-1})^{-2}A$
Computing inverses of matrices: example

Find the inverse of

\[
A = \begin{pmatrix}
1 & 1 & 1 \\
1 & 3 & 2 \\
-1 & 1 & -1
\end{pmatrix}
\]

Daniel Chan (UNSW)
Chapter 5: Matrices
Semester 1 2015
Computing inverses of matrices: example

Q Find the inverse of \(A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ -1 & 1 & -1 \end{pmatrix} \)
Computing inverses of matrices: example

Q Find the inverse of \(A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ -1 & 1 & -1 \end{pmatrix} \)
The algorithm for inverting matrices

Let $A \in \mathbb{M}_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A | I)$.
2. Apply ERO's until we get row echelon form $(U | B)$.
3. If U has non-leading columns, we stop as solns to $A x = 0$ are not unique so A is not invertible.
4. If U has no non-leading columns, then A is invertible & we can apply EROS to transform $(U | B)$ to the form $(I | C)$ with $C = A^{-1}$.

Q: Is $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{pmatrix}$ invertible? If so, find its inverse.
The algorithm for inverting matrices

Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A | I)$.
2. Apply ERO's until we get row echelon form $(U | B)$.
3. If U has non-leading columns, we stop as solns to $A \mathbf{x} = \mathbf{0}$ are not unique so A is not invertible.
4. If U has no non-leading columns, then A is invertible & we can apply EROs to transform $(U | B)$ to the form $(I | C)$ with $C = A^{-1}$.

Is $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{bmatrix}$ invertible? If so, find its inverse.
The algorithm for inverting matrices

Let \(A \in M_{nn} \). To determine invertibility and invert \(A \) if invertible we:

1. Form the augmented \(n \times 2n \)-matrix \((A|I)\).
Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A|I)$.
2. Apply ERO’s until we get row echelon form $(U|B)$.
Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A|I)$.
2. Apply ERO’s until we get row echelon form $(U|B)$.
3. If U has non-leading columns, we stop.
4. If U has no non-leading columns, then A is invertible & we can apply EROS to transform $(U|B)$ to the form $(I|C)$ with $C = A^{-1}$.

Is $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{pmatrix}$ invertible? If so, find its inverse.
The algorithm for inverting matrices

Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A|I)$.
2. Apply ERO’s until we get row echelon form $(U|B)$.
3. If U has non-leading columns, we stop as solns to $Ax = 0$ are not unique so A is not invertible.
4. If U has no non-leading columns, then A is invertible & we can apply EROS to transform $(U|B)$ to the form $(I|C)$ with $C = A^{-1}$.
The algorithm for inverting matrices

Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A|I)$.
2. Apply ERO’s until we get row echelon form $(U|B)$.
3. If U has non-leading columns, we stop as solns to $Ax = 0$ are not unique so A is not invertible.
4. If U has no non-leading columns, then A is invertible &
The algorithm for inverting matrices

Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A|I)$.
2. Apply ERO’s until we get row echelon form $(U|B)$.
3. If U has non-leading columns, we stop as solns to $Ax = 0$ are not unique so A is not invertible.
4. If U has no non-leading columns, then A is invertible & we can apply EROS to transform $(U|B)$ to the form $(I|C)$ with $C = A^{-1}$.

Is $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{bmatrix}$ invertible? If so, find its inverse.
The algorithm for inverting matrices

Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

1. Form the augmented $n \times 2n$-matrix $(A|I)$.
2. Apply ERO’s until we get row echelon form $(U|B)$.
3. If U has non-leading columns, we stop as solns to $Ax = 0$ are not unique so A is not invertible.
4. If U has no non-leading columns, then A is invertible & we can apply EROS to transform $(U|B)$ to the form $(I|C)$ with $C = A^{-1}$.

Q: Is $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{pmatrix}$ invertible? If so, find its inverse.
To see why the method works, we need to know

Proposition

1. There's an invertible matrix $E(i,j;c) \in M_{nn}$ such that $E(i,j;c)A$ is obtained from A by the ERO $R_i = R_i + cR_j$.

2. There's an invertible matrix $E(i,j) \in M_{nn}$ such that $E(i,j)A$ is obtained from A by the ERO $R_i \leftrightarrow R_j$.

3. There's a matrix $E(i;c) \in M_{nn}$ such that $E(i;c)A$ is obtained from A by the ERO $R_i = cR_i$. It's invertible if $c \neq 0$.

In other words, an ERO can be performed by left multiplication by a corresponding matrix.

Proof.

Just dream up the required matrices (see notes) e.g.
EROS and matrix multiplication

To see why the method works, we need to know

Proposition

1. There's an invertible matrix \(E(i,j;c) \in M_{nn} \) such that \(E(i,j;c)A \) is obtained from \(A \) by the ERO \(R_i = R_i + cR_j \).

2. There's an invertible matrix \(E(i,j) \) such that \(E(i,j)A \) is obtained from \(A \) by the ERO \(R_i \leftrightarrow R_j \).

3. There's a matrix \(E(i;c) \) such that \(E(i;c)A \) is obtained from \(A \) by the ERO \(R_i = cR_i \). It's invertible if \(c \neq 0 \).

In other words, an ERO can be performed by left multiplication by a corresponding matrix.

Proof.

Just dream up the required matrices (see notes) e.g. Daniel Chan (UNSW)
To see why the method works, we need to know

Proposition

Let $A \in M_{mn}$.

1. There’s an invertible matrix $E(i, j; c) \in M_{nn}$ such that $E(i, j, c)A$ is obtained from A by the ERO $R_i = R_i + cR_j$.

2. There’s an invertible matrix $E(i, j)$ such that $E(i, j)A$ is obtained from A by the ERO $R_i \leftrightarrow R_j$.

3. There’s a matrix $E(i; c)$ such that $E(i; c)A$ is obtained from A by the ERO $R_i = cR_i$. It’s invertible if $c \neq 0$.

In other words, an ERO can be performed by left multiplication by a corresponding matrix.
To see why the method works, we need to know

Proposition

Let $A \in M_{mn}$.

1. There’s an invertible matrix $E(i, j; c) \in M_{nn}$ such that $E(i, j, c)A$ is obtained from A by the ERO $R_i = R_i + cR_j$.

2. There’s an invertible matrix $E(i, j)$ st $E(i, j)A$ is obtained from A by the ERO $R_i \leftrightarrow R_j$. It’s invertible if $c \neq 0$. In other words, an ERO can be performed by left multiplication by a corresponding matrix.
To see why the method works, we need to know

Proposition

Let $A \in M_{mn}$.

1. There’s an invertible matrix $E(i, j; c) \in M_{nn}$ such that $E(i, j, c)A$ is obtained from A by the ERO $R_i = R_i + cR_j$.

2. There’s an invertible matrix $E(i, j)$ st $E(i, j)A$ is obtained from A by the ERO $R_i \leftrightarrow R_j$.

3. There’s a matrix $E(i; c)$ st $E(i; c)A$ is obtained from A by the ERO $R_i = cR_i$. It’s invertible if $c \neq 0$.

In other words, an ERO can be performed by left multiplication by a corresponding matrix.

Proof. Just dream up the required matrices (see notes) e.g. Daniel Chan (UNSW)
To see why the method works, we need to know

Proposition

Let $A \in M_{mn}$.

1. There’s an invertible matrix $E(i, j; c) \in M_{nn}$ such that $E(i, j, c)A$ is obtained from A by the ERO $R_i = R_i + cR_j$.

2. There’s an invertible matrix $E(i, j)$ st $E(i, j)A$ is obtained from A by the ERO $R_i \leftrightarrow R_j$.

3. There’s a matrix $E(i; c)$ st $E(i; c)A$ is obtained from A by the ERO $R_i = cR_i$. It’s invertible if $c \neq 0$.

In other words, an ERO can be performed by left multn by a corresponding matrix.
To see why the method works, we need to know

Proposition

Let \(A \in M_{mn} \).

1. There’s an invertible matrix \(E(i, j; c) \in M_{nn} \) such that \(E(i, j, c)A \) is obtained from \(A \) by the ERO \(R_i = R_i + cR_j \).

2. There’s an invertible matrix \(E(i, j) \) st \(E(i, j)A \) is obtained from \(A \) by the ERO \(R_i \leftrightarrow R_j \).

3. There’s a matrix \(E(i; c) \) st \(E(i; c)A \) is obtained from \(A \) by the ERO \(R_i = cR_i \). It’s invertible if \(c \neq 0 \).

In other words, an ERO can be performed by left multn by a corresponding matrix.

Proof. Just dream up the required matrices (see notes) e.g.
Why our algorithm works

Hence associativity of matrix multiplication:

\[\Rightarrow \]

\[a \text{ sequence of EROs corresponding to matrices } E_1, \ldots, E_l, \text{ itself corresponds to left multn by } E_l \ldots E_2 E_1. \]

Thus if these EROs send \((A | I) \mapsto (I | C)\) we have:

\[(I | C) = (E_l \ldots E_2 E_1 A | E_l \ldots E_2 E_1 I) = (E_l \ldots E_2 E_1 A | E_l \ldots E_2 E_1). \]

Hence \(C = E_l \ldots E_2 E_1 \) and \(CA = I\). But each \(E_i\) is invertible so the product \(C\) is also invertible and \(C = A^{-1}\).
Hence associativity of matrix muln \implies a sequence of EROs corresponding to matrices E_1, \ldots, E_l, itself corresponds to left multn by $E_l \ldots E_2 E_1$.

Thus if these EROs send $(A | I) \mapsto (I | C)$ we have $(I | C) = (E_l \ldots E_2 E_1 A | E_l \ldots E_2 E_1 I) = (E_l \ldots E_2 E_1 A | E_l \ldots E_2 E_1)$.

Hence $C = E_l \ldots E_2 E_1$ and $CA = I$. But each E_i is invertible so the product C is too & $C = A^{-1}$.

Daniel Chan
UNSW
Chapter 5: Matrices
Semester 1 2015
Hence associativity of matrix muln \implies a sequence of EROs corresponding to matrices E_1, \ldots, E_i, itself corresponds to left multn by $E_i \ldots E_2 E_1$. Thus if these EROs send $(A|I) \mapsto (I|C)$ we have

$$
(I|C) = (E_i \ldots E_2 E_1 A|E_i \ldots E_2 E_1 I) = \ldots = (E_i \ldots E_2 E_1 A|E_i \ldots E_2 E_1).
$$

Hence $C = E_i \ldots E_2 E_1$ and $CA = I$. But each E_i is invertible so the product C is too & $C = A^{-1}$.
Hence associativity of matrix muln \implies a sequence of EROs corresponding to matrices E_1, \ldots, E_l, itself corresponds to left multn by $E_l \ldots E_2 E_1$. Thus if these EROs send $(A|I) \mapsto (I|C)$ we have

$$(I|C) = (E_l \ldots E_2 E_1 A|E_l \ldots E_2 E_1 I) = (E_l \ldots E_2 E_1 A|E_l \ldots E_2 E_1)$$.
Hence associativity of matrix mulpn \implies a sequence of EROs corresponding to matrices \(E_1, \ldots, E_l \), itself corresponds to left mulpn by \(E_l \cdots E_2 E_1 \). Thus if these EROs send \((A|I) \mapsto (I|C)\) we have

\[
(I|C) = (E_l \cdots E_2 E_1 A|E_l \cdots E_2 E_1 I) = (E_l \cdots E_2 E_1 A|E_l \cdots E_2 E_1).
\]

Hence \(C = E_l \cdots E_2 E_1 \) and \(CA = I \). But each \(E_j \) is invertible so the product \(C \) is too & \(C = A^{-1} \).
Invertibility for square matrices

Theorem

Suppose that $A \in \mathbb{M}_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.

Proof

This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary

Suppose that $A \in \mathbb{M}_{nn}$. Then $XA = I \iff AX = I \iff X = A^{-1}$.

Proof.

Note AX or XA square $\Rightarrow X \in \mathbb{M}_{nn}$, so by symmetry, suff show $AX = I \Rightarrow X$ is invertible.

But $Xx = 0 \Rightarrow x = 0$ so $AX = 0 \Rightarrow X = A^{-1}$ so we're done by the thm.
Invertibility for square matrices

Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $A x = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $A x = b$ has a unique solution.

Proof

This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary

Suppose that $A \in M_{nn}$. Then $XA = I \iff AX = I \iff X = A^{-1}$.

Proof.

Note AX or XA square $\Rightarrow X \in M_{nn}$, so by symmetry, suff show $AX = I \Rightarrow X$ is invertible. But $X x = 0 \Rightarrow x = I x = AX x = A 0 = 0$ so we're done by the thm.
Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.

2. U has no zero rows.

3. U has no nonleading columns.

4. $Ax = 0$ has a unique solution $x = 0$.

5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.

Proof

This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary

Suppose that $A \in M_{nn}$. Then $XA = I \iff AX = I \iff X = A^{-1}$.

Proof.

Note AX or XA square $\Rightarrow X \in M_{nn}$, so by symmetry, suff show $AX = I \Rightarrow X$ is invertible.

But $Xx = 0 = \Rightarrow x = X^{-1}x = AXx = 0$ so we're done by the thm.
Invertibility for square matrices

Theorem
Suppose that \(A \in M_{nn} \) has row-echelon form \(U \). Then the following are equivalent:

1. \(A \) is invertible.
2. \(U \) has no zero rows.
3. \(U \) has no nonleading columns.
4. \(A \mathbf{x} = \mathbf{0} \) has a unique solution \(\mathbf{x} = \mathbf{0} \).
5. For each \(\mathbf{b} \in \mathbb{R}^n \), \(A \mathbf{x} = \mathbf{b} \) has a unique solution.

Proof
This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary
Suppose that \(A \in M_{nn} \). Then
\[XA = I \iff AX = I \iff X = A^{-1}. \]

Proof.
Note \(AX \) or \(XA \) square = \(\Rightarrow X \in M_{nn} \), so by symmetry, suff show \(AX = I \iff X \) is invertible. But \(X \mathbf{x} = \mathbf{0} \iff \mathbf{x} = \mathbf{I} \mathbf{x} = AX \mathbf{x} = A \mathbf{0} = \mathbf{0} \) so we’re done by the thm.
Invertibility for square matrices

Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $A x = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $A x = b$ has a unique solution.

Proof

This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary

Suppose that $A \in M_{nn}$. Then $X A = I \iff A X = I \iff X = A^{-1}$.

Proof.

Note $A X$ or $X A$ square $\Rightarrow X \in M_{nn}$, so by symmetry, suff show $A X = I \Rightarrow X$ is invertible.

But $X x = 0 \Rightarrow x = 0 = A X x = A 0 = 0$ so we're done by the thm.
Invertibility for square matrices

Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.
Invertibility for square matrices

Theorem

Suppose that \(A \in M_{nn} \) has row-echelon form \(U \). Then the following are equivalent:

1. \(A \) is invertible.
2. \(U \) has no zero rows.
3. \(U \) has no nonleading columns.
4. \(Ax = 0 \) has a unique solution \(x = 0 \).
5. For each \(b \in \mathbb{R}^n \), \(Ax = b \) has a unique solution.

Proof This follows from our algorithm for inversion &
Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $A\mathbf{x} = \mathbf{0}$ has a unique solution $\mathbf{x} = \mathbf{0}$.
5. For each $\mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ has a unique solution.

Proof This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.
Invertibility for square matrices

Theorem
Suppose that \(A \in M_{nn} \) has row-echelon form \(U \). Then the following are equivalent:

1. \(A \) is invertible.
2. \(U \) has no zero rows.
3. \(U \) has no nonleading columns.
4. \(Ax = 0 \) has a unique solution \(x = 0 \).
5. For each \(b \in \mathbb{R}^n \), \(Ax = b \) has a unique solution.

Proof This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary Suppose that \(A \in M_{nn} \). Then
Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.

Proof This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary Suppose that $A \in M_{nn}$. Then

$$XA = I \iff AX = I \iff X = A^{-1}.$$
Invertibility for square matrices

Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.

Proof This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary Suppose that $A \in M_{nn}$. Then

$$XA = I \iff AX = I \iff X = A^{-1}.$$

Proof. Note AX or XA square $\implies X \in M_{nn}$,
Invertibility for square matrices

Theorem
Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.

Proof. This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary
Suppose that $A \in M_{nn}$. Then

$$XA = I \iff AX = I \iff X = A^{-1}.$$

Proof. Note AX or XA square $\Rightarrow X \in M_{nn}$, so by symmetry, suff show $AX = I \Rightarrow X$ is invertible.
Invertibility for square matrices

Theorem
Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

1. A is invertible.
2. U has no zero rows.
3. U has no nonleading columns.
4. $Ax = 0$ has a unique solution $x = 0$.
5. For each $b \in \mathbb{R}^n$, $Ax = b$ has a unique solution.

Proof This follows from our algorithm for inversion & the fact that in a square matrix if every row is a leading row, then every column is a leading column.

Corollary Suppose that $A \in M_{nn}$. Then

$$XA = I \iff AX = I \iff X = A^{-1}.$$

Proof. Note AX or XA square $\implies X \in M_{nn}$, so by symmetry, suff show $AX = I \implies X$ is invertible. But $Xx = 0 \implies x = l x = AXx = AO = 0$ so we’re done by the thm.
Inverse of 2 × 2-matrices

Recall the 2 × 2-determinant

\[
\begin{vmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{vmatrix}
= \det(A) = a_{11}a_{22} - a_{12}a_{21}.
\]

Inverse formula

Let

\[A = (a_{ij}) \in M_{22}.\]

Then \(A\) is invertible if \(\det(A) \neq 0\) in which case

\[A^{-1} = \frac{1}{\det(A)} \left(a_{22} - a_{12} - a_{21}a_{11} \right).\]

Proof.

Just multiply

Remark

We'll generalise the relationship between determinants and invertibility later.

The formula in this case is best appreciated if you understand the linear mapping \(\mathbb{R}^2 \to \mathbb{R}^2\) associated to \(A\).
Inverse of 2×2-matrices

Recall the 2×2-determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$
Inverse of 2×2-matrices

Recall the 2×2-determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Inverse formula

Let $A = (a_{ij}) \in M_{22}$.

Proof.

Just multiply

Remark

We’ll generalise the relationship between determinants and invertibility later. The formula in this case is best appreciated if you understand the linear mapping $\mathbb{R}^2 \to \mathbb{R}^2$ associated to A.

Daniel Chan (UNSW)

Chapter 5: Matrices

Semester 1 2015

25 / 35
Inverse of 2×2-matrices

Recall the 2×2-determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Inverse formula

Let $A = (a_{ij}) \in M_{22}$. Then A is invertible if $\det A \neq 0$ in which case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Proof. Just multiply

Remark

We'll generalise the relationship between determinants and invertibility later. The formula in this case is best appreciated if you understand the linear mapping $\mathbb{R}^2 \to \mathbb{R}^2$ associated to A.

Daniel Chan (UNSW)

Chapter 5: Matrices

Semester 1 2015 25 / 35
Inverse of 2×2-matrices

Recall the 2×2-determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Inverse formula

Let $A = (a_{ij}) \in M_{22}$. Then A is invertible if $\det A \neq 0$ in which case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$
Inverse of 2×2-matrices

Recall the 2×2-determinant

\[
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix} = \det\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.
\]

Inverse formula

Let $A = (a_{ij}) \in M_{22}$. Then A is invertible if $\det A \neq 0$ in which case

\[
A^{-1} = \frac{1}{\det(A)} \begin{pmatrix}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{pmatrix}.
\]

Proof. Just multiply
Inverse of 2×2-matrices

Recall the 2×2-determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Inverse formula

Let $A = (a_{ij}) \in M_{22}$. Then A is invertible if $\det A \neq 0$ in which case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Proof. Just multiply

Remark We’ll generalise the relationship between determinants and invertibility later.
Inverse of 2×2-matrices

Recall the 2×2-determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Inverse formula

Let $A = (a_{ij}) \in M_{22}$. Then A is invertible if $\det A \neq 0$ in which case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Proof. Just multiply

Remark We’ll generalise the relationship between determinants and invertibility later. The formula in this case is best appreciated if you understand the linear mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ associated to A.

Daniel Chan (UNSW)
We define the determinant of $A \in M_{nn}$, using induction on n.

We've defined it for $n = 2$ (and 3), and suppose it's defined for $(n-1) \times (n-1)$-matrices. First definition:

For $1 \leq i, j \leq n$, the $(row\ i, \ column\ j)$ minor of A, denoted $|A|_{ij}$, is the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j from A.

E.g. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.

$|A|_{21} = $
Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n.

E.g. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.

$|A|_{21} = \text{Defn}$

For a 1×1-matrix (a) we define its determinant to be $\det(a) = a$.

There are many definitions of the determinant. To keep the exposition elementary, we'll use a generalisation of the one for 3×3-determinants.
Minors of a square matrix

We define the *determinant* of \(A \in M_{nn} \), using induction on \(n \). We’ve defined it for \(n = 2 \) (and 3), and suppose it’s defined for \((n - 1) \times (n - 1)\)-matrices. First
Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n. We’ve defined it for $n = 2$ (and 3), and suppose it’s defined for $(n - 1) \times (n - 1)$-matrices. First

Definition

For $1 \leq i, j \leq n$, the *(row i, column j) minor* of A, denoted $|A_{ij}|$, is...
Minors of a square matrix

We define the determinant of $A \in M_{nn}$, using induction on n. We’ve defined it for $n = 2$ (and 3), and suppose it’s defined for $(n - 1) \times (n - 1)$-matrices. First

Definition

For $1 \leq i, j \leq n$, the *row i, column j minor* of A, denoted $|A_{ij}|$, is the determinant of the $(n - 1) \times (n - 1)$ matrix obtained by deleting row i and column j from A.

Example

Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.

$|A_{21}| = \text{Defn}$ For a 1×1-matrix (a) we define its determinant to be $\det(a) = a$.

There are many definitions of the determinant. To keep the exposition elementary, we’ll use a generalisation of the one for 3×3-determinants.
Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n. We’ve defined it for $n = 2$ (and 3), and suppose it’s defined for $(n - 1) \times (n - 1)$-matrices. First

Definition

For $1 \leq i, j \leq n$, the *(row i, column j) minor* of A, denoted $|A_{ij}|$, is the determinant of the $(n - 1) \times (n - 1)$ matrix obtained by deleting row i and column j from A.

E.g. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.
Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n. We’ve defined it for $n = 2$ (and 3), and suppose it’s defined for $(n - 1) \times (n - 1)$-matrices. First

Definition

For $1 \leq i, j \leq n$, the *(row i, column j) minor* of A, denoted $|A_{ij}|$, is the determinant of the $(n - 1) \times (n - 1)$ matrix obtained by deleting row i and column j from A.

E.g. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.

$|A_{21}| =$
Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n. We’ve defined it for $n = 2$ (and 3), and suppose it’s defined for $(n - 1) \times (n - 1)$-matrices. First

Definition

For $1 \leq i, j \leq n$, the *(row i, column j)* minor of A, denoted $|A_{ij}|$, is the determinant of the $(n - 1) \times (n - 1)$ matrix obtained by deleting row i and column j from A.

E.g. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.

$|A_{21}| =$

Defn For a 1×1-matrix (a) we define its *determinant* to be $\text{det}(a) = a$.
Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n. We’ve defined it for $n = 2$ (and 3), and suppose it’s defined for $(n-1) \times (n-1)$-matrices. First

Definition

For $1 \leq i, j \leq n$, the *(row i, column j) minor* of A, denoted $|A_{ij}|$, is the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j from A.

E.g. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$.

$|A_{21}| =$

Defn For a 1×1-matrix (a) we define its *determinant* to be $\det(a) = a$.

There are many definitions of the determinant. To keep the exposition elementary, we’ll use a generalisation of the one for 3×3-determinants.
Determinant

This definition is via expanding along the first row.

Definition

Let $A \in \mathbb{M}_{nn}$ with $n \geq 2$. Then the determinant of A is

$$\det(A) = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}| + \cdots + (-1)^{n+1}|A_{1n}|.$$

E.g.

Let $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ -1 & 1 & 5 & 0 \\ 7 & -2 & 3 & 1 \end{pmatrix}$.

Then $\det(A) = \text{...}$
Determinant

This definition is via *expanding along the first row*.

\[
\det(A) = a_{11} |A_{11}| - a_{12} |A_{12}| + a_{13} |A_{13}| + \cdots + (-1)^{n+1} a_{1n} |A_{1n}|
\]

E.g. Let

\[
A = \begin{pmatrix}
2 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 \\
-1 & 1 & 5 & 0 \\
7 & -2 & 3 & 1
\end{pmatrix}
\]

Then \(\det(A)\) =

Daniel Chan (UNSW)
Chapter 5: Matrices
SEMESTER 1 2015 27 / 35
Determinant

This definition is via *expanding along the first row.*

Definition

Let $A \in M_{nn}$ with $n \geq 2$. Then the *determinant of A* is
This definition is via expanding along the first row.

Definition

Let $A \in M_{nn}$ with $n \geq 2$. Then the determinant of A is

$$
\text{det}(A) = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}| + \cdots + (-1)^{n+1}|A_{1n}|
$$

$$
= \sum_{k=1}^{n} (-1)^{k+1} a_{1k} |A_{1k}|.
$$
Determinant

This definition is via expanding along the first row.

Definition

Let $A \in M_{nn}$ with $n \geq 2$. Then the **determinant** of A is

\[
\det(A) = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}| + \cdots + (-1)^{n+1}|A_{1n}|
\]

\[
= \sum_{k=1}^{n} (-1)^{k+1} a_{1k}|A_{1k}|.
\]

E.g. Let $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ -1 & 1 & 5 & 0 \\ 7 & -2 & 3 & 1 \end{pmatrix}$.
This definition is via expanding along the first row.

Definition

Let $A \in M_{nn}$ with $n \geq 2$. Then the *determinant* of A is

$$\det(A) = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}| + \cdots + (-1)^{n+1}|A_{1n}|$$

$$= \sum_{k=1}^{n} (-1)^{k+1} a_{1k}|A_{1k}|.$$

E.g. Let $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ -1 & 1 & 5 & 0 \\ 7 & -2 & 3 & 1 \end{pmatrix}$. Then $\det(A) =$
Determinant of lower triangular matrices

We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever $i < j$.

The computation above shows more generally the following proposition:

If $A = (a_{ij})$ is lower triangular, then $\det(A)$ is just the product of the diagonal elements.

$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

In particular, $\det(I) = 1$.

Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2015
Determinant of lower triangular matrices

We say $A = (a_{ij})$ is lower triangular,
We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever $i < j$.
We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever $i < j$.

The computation above shows more generally the following:

\[\det(A) = \prod_{i=1}^{n} a_{ii} \]

In particular, \[\det(I) = 1 \]
We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever $i < j$.

The computation above shows more generally the following

Proposition

If $A = (a_{ij})$ is lower triangular,

$$
\det(A) = \prod_{i=1}^{n} a_{ii}
$$

In particular, $\det(I) = 1$.

Determinant of lower triangular matrices

We say \(A = (a_{ij}) \) is *lower triangular*, if \(a_{ij} = 0 \) whenever \(i < j \).

The computation above shows more generally the following

Proposition

If \(A = (a_{ij}) \) is lower triangular, then \(\det(A) \) is just the product of the diagonal elements.

\[
\det(A) = \prod_{i=1}^{n} a_{ii}
\]

In particular, \(\det(I) = 1 \).
We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever $i < j$.

The computation above shows more generally the following

Proposition

If $A = (a_{ij})$ is lower triangular, then $\det(A)$ is just the product of the diagonal elements.

$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

In particular, $\det(I) = 1$.
We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever $i < j$.

The computation above shows more generally the following

Proposition

If $A = (a_{ij})$ is lower triangular, then $\det(A)$ is just the product of the diagonal elements.

$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

In particular,

$$\det(I) = 1.$$
The geometric meaning of the determinant

Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5, 6.

Just as the \(2 \times 2\)-determinant gives the area of parallelograms, and \(3 \times 3\)-determinants volumes of parallelopipeds, the \(n \times n\)-determinant gives the volume of \(n\)-dimensional parallelopipeds (unfortunately we can't prove this).

In particular, the linear mapping associated \(\mathbb{R}^n \rightarrow \mathbb{R}^n\) to \(A\) expands volumes by \(\det(A)\).

The sign of \(\det(A)\) is related to a higher dimensional version of the right hand rule.

All these facts are easy to see for diagonal matrices, i.e. those whose non-zero entries all lie on the diagonal.
Unfortunately in this course, we will not be able to talk about the determinant in depth.

The geometric meaning of the determinant

- For a thorough treatment, see my MATH2601 lecture notes, lectures 5, 6.
- Just as the 2×2-determinant gives the area of parallelograms, and 3×3-determinants volumes of parallelepipeds, the $n \times n$-determinant gives the volume of n-dimensional parallelepipeds (unfortunately we can't prove this).
- In particular, the linear mapping associated $\mathbb{R}^n \rightarrow \mathbb{R}^n$ to A expands volumes by $\det(A)$.
- The sign of $\det(A)$ is related to a higher dimensional version of the right hand rule.
- All these facts are easy to see for diagonal matrices, i.e. those whose non-zero entries all lie on the diagonal.
Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.
The geometric meaning of the determinant

- Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.
- Just as the (magnitude of) 2×2-determinant gives the area of parallelograms, and 3×3-determinants volumes of parallelopipeds,
Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.

Just as the (magnitude of) 2×2-determinant gives the area of parallelograms, and 3×3-determinants volumes of parallelopipeds, the $n \times n$-determinant gives the volume of n-dimensional parallelopipeds (unfortunately we can't prove this).
The geometric meaning of the determinant

- Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.

- Just as the (magnitude of) 2×2-determinant gives the area of parallelograms, and 3×3-determinants volumes of parallelopipeds, the $n \times n$-determinant gives the volume of n-dimensional parallelopipeds (unfortunately we can’t prove this).

- In particular, the linear mapping associated $\mathbb{R}^n \rightarrow \mathbb{R}^n$ to A expands volumes by $\det(A)$.
The geometric meaning of the determinant

- Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.

- Just as the (magnitude of) 2×2-determinant gives the area of parallelograms, and 3×3-determinants volumes of parallelopipeds, the $n \times n$-determinant gives the volume of n-dimensional parallelopipeds (unfortunately we can’t prove this).

- In particular, the linear mapping associated $\mathbb{R}^n \rightarrow \mathbb{R}^n$ to A expands volumes by $\det(A)$.

- The sign of $\det(A)$ is related to a higher dimensional version of the right hand rule.
Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.

Just as the (magnitude of) 2×2-determinant gives the area of parallelograms, and 3×3-determinants volumes of parallelopipeds, the $n \times n$-determinant gives the volume of n-dimensional parallelopipeds (unfortunately we can’t prove this).

In particular, the linear mapping associated $\mathbb{R}^n \rightarrow \mathbb{R}^n$ to A expands volumes by $\det(A)$.

The sign of $\det(A)$ is related to a higher dimensional version of the right hand rule.

All these facts are easy to see for diagonal matrices, i.e. those whose non-zero entries all lie on the diagonal.
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition $\det(A) = \det(A^T)$.

Proof.

Hard (& omitted) with our defn except for 2×2.

Since the transpose swaps columns with rows, we can compute $\det(A)$ by expanding along the first column as in the formula below

$$\det(A) = a_{11} |A_{11}| - a_{21} |A_{21}| + \cdots + (-1)^{n+1} a_{n1} |A_{n1}|.$$

In particular, if A is upper triangular in the sense that $a_{ij} = 0$ whenever $i > j$, then $\det(A)$ is the product of the diagonal entries. E.g.
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition $\det(A) = \det(A^T)$.

Proof. Hard (& omitted) with our defn except for 2×2. Since the transpose swaps columns with rows, we can compute $\det(A)$ by expanding along the first column as in the formula below:

$$\det(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + \cdots + (-1)^{n+1}a_{n1}|A_{n1}|.$$

In particular, if A is upper triangular in the sense that $a_{ij} = 0$ whenever $i > j$, then $\det(A)$ is the product of the diagonal entries.

E.g. Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2015 30 / 35
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$$\det(A) = \det(A^T).$$
Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$$\det(A) = \det(A^T).$$

Proof. Hard (& omitted) with our defn except for 2×2.
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$$\det(A) = \det(A^T).$$

Proof. Hard (& omitted) with our defn except for 2×2.

Since the transpose swaps columns with rows, we can compute $\det(A)$ by *expanding along the first column* as in the formula below.
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$$\det(A) = \det(A^T).$$

Proof. Hard (& omitted) with our defn except for 2×2.

Since the transpose swaps columns with rows, we can compute $\det(A)$ by expanding along the first column as in the formula below

Formula

$$\det(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + \cdots + (-1)^{n+1}a_{n1}|A_{n1}|.$$
Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$$\text{det}(A) = \text{det}(A^T).$$

Proof. Hard (& omitted) with our defn except for 2×2.

Since the transpose swaps columns with rows, we can compute $\text{det}(A)$ by **expanding along the first column** as in the formula below

Formula

$$\text{det}(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + \cdots + (-1)^{n+1}a_{n1}|A_{n1}|.$$
In particular, if A is **upper triangular** in the sense that
Determinant of the Transpose

Let \(A = (a_{ij}) \in M_{nn} \). Then

Proposition

\[\det(A) = \det(A^T). \]

Proof. Hard (& omitted) with our defn except for \(2 \times 2 \).

Since the transpose swaps columns with rows, we can compute \(\det(A) \) by expanding along the first column as in the formula below

Formula

\[
\det(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + \cdots + (-1)^{n+1}a_{n1}|A_{n1}|.
\]

In particular, if \(A \) is *upper triangular* in the sense that \(a_{ij} = 0 \) whenever \(i > j \),
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$\det(A) = \det(A^T)$.

Proof. Hard (& omitted) with our defn except for 2×2.

Since the transpose swaps columns with rows, we can compute $\det(A)$ by **expanding along the first column** as in the formula below.

Formula

$$\det(A) = a_{11} |A_{11}| - a_{21} |A_{21}| + \cdots + (-1)^{n+1} a_{n1} |A_{n1}|.$$

In particular, if A is **upper triangular** in the sense that $a_{ij} = 0$ whenever $i > j$, then $\det(A)$ is the product of the diagonal entries.
Determinant of the Transpose

Let $A = (a_{ij}) \in M_{nn}$. Then

Proposition

$\det(A) = \det(A^T)$.

Proof. Hard (& omitted) with our defn except for 2×2.

Since the transpose swaps columns with rows, we can compute $\det(A)$ by **expanding along the first column** as in the formula below

Formula

$$\det(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + \cdots + (-1)^{n+1}a_{n1}|A_{n1}|.$$

In particular, if A is **upper triangular** in the sense that $a_{ij} = 0$ whenever $i > j$, then $\det(A)$ is the product of the diagonal entries.

E.g.
Determinant of products

Theorem
\[\det(AB) = \det(A) \det(B) \]

Note that \(A, B \) square and \(AB \) defined \(\Rightarrow \) \(A, B \) have the same size.

Proof. Hard, see my MATH2601 notes.

E.g. Find the determinant of \(A \) where
\[
A = \begin{pmatrix}
1 & 0 & 0 & 42 \\
4 & e^{\pi} & -\sqrt{2} & 1 \\
2 & 0 & \int_0^1 \frac{1}{\sqrt{(1-x^2)(2-x^2)}} \, dx
\end{pmatrix}
\]

Corollary
If \(A \) is invertible, then \(\det(A) \neq 0 \) & \(\det(A^{-1}) = \det(A)^{-1} \).

Proof. Daniel Chan (UNSW)
Theorem

$$\det(AB) = \det(A) \det(B)$$

Note that A, B square and AB defined $\Rightarrow A$, B have the same size.

Proof. Hard, see my MATH2601 notes.

E.g. Find the determinant of A

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4e^{\pi} & -\sqrt{2} & 1 \\ 2 & 0 & \int_1^0 dx \sqrt{(1-x^2)(2-x^2)} \end{bmatrix}.$$

Corollary

If A is invertible, then $\det(A) \neq 0$ & $\det(A^{-1}) = \det(A)^{-1}$.

Proof. Daniel Chan (UNSW)
Theorem

\[\det(AB) = \det(A) \det(B) \]

Note that \(A, B \) square and \(AB \) defined \(\implies \) \(A, B \) have the same size.
Determinant of products

Theorem

\[\det(AB) = \det(A) \det(B) \]

Note that \(A, B \) square and \(AB \) defined \(\implies \) \(A, B \) have the same size.

Proof. Hard, see my MATH2601 notes.
Determinant of products

Theorem

\[\det(AB) = \det(A) \det(B) \]

Note that \(A, B \) square and \(AB \) defined \(\implies \) \(A, B \) have the same size.

Proof. Hard, see my MATH2601 notes.

E.g. Find the determinant of \(A^{42} \) where

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
4e^{\pi - \sqrt{2}} & \frac{1}{2} & 0 \\
0 & \int_0^1 \frac{dx}{\sqrt{(1-x^2)(2-x^2)}} & 4
\end{pmatrix}
\]
Determinant of products

Theorem

\[
\det(AB) = \det(A) \det(B)
\]

Note that \(A, B\) square and \(AB\) defined \(\implies\) \(A, B\) have the same size.

Proof. Hard, see my MATH2601 notes.

E.g. Find the determinant of \(A^4\) where \(A = \begin{pmatrix}
1 & \pi - \sqrt{2} & 0 \\
4e^{\pi - \sqrt{2}} & 1/2 & 0 \\
0 & \int_0^1 \frac{dx}{\sqrt{(1-x^2)(2-x^2)}} & 4
\end{pmatrix}\).

Corollary

If \(A\) is invertible, then \(\det(A) \neq 0\) & \(\det(A^{-1}) = \det(A)^{-1}\).
Determinant of products

Theorem

\[
\det(AB) = \det(A) \det(B)
\]

Note that \(A, B \) square and \(AB \) defined \(\implies \) \(A, B \) have the same size.

Proof. Hard, see my MATH2601 notes.

E.g. Find the determinant of \(A^{42} \) where

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
4e^{\pi - \sqrt{2}} & \frac{1}{2} & 0 \\
0 & \int_0^1 \frac{dx}{\sqrt{(1-x^2)(2-x^2)}} & 4
\end{pmatrix}
\]

Corollary

If \(A \) is invertible, then \(\det(A) \neq 0 \) & \(\det(A^{-1}) = \det(A)^{-1} \).

Proof.
Below we see how performing an ERO to get from $A \xrightarrow{\text{ERO}} B$ changes the determinant.

Proposition 1
If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.

Proposition 2
If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c\det(A)$. i.e, multiplying a row by c multiplies the determinant by c.

Proposition 3
If $A \xrightarrow{R_i = R_i + cR_j} B$, then $\det(B) = \det(A)$. i.e, In particular, if two rows of A are the same, or A has a row of 0s, then $\det(A) = 0$.

Proof sketch.
Recall that $B = EA$ for some square matrix E. We need only check $\det(E) = -1$, c, 1 in cases 1), 2), 3) resp. e.g.

E.g. Suppose $A \in \mathbb{M}_{44}$ has determinant 2. Find $\det(3A)$.
EROS and determinants

Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition 1

If $A \xrightarrow{R_i\leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.

Proposition 2

If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c\det(A)$. i.e. multiplying a row by c multiplies the determinant by c.

Proposition 3

If $A \xrightarrow{R_i = R_i + cR_j} B$, then $\det(B) = \det(A)$. i.e. In particular, if two rows of A are the same, or A has a row of 0s, then $\det(A) = 0$.

Proof sketch.

Recall that $B = EA$ for some square matrix E. We need only check $\det(E) = -1$, c, 1 in cases 1), 2), 3) resp. e.g.

E.g. Suppose $A \in M_{44}$ has determinant 2. Find $\det(3A)$.
EROs and determinants

Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

1. If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$.
EROs and determinants

Below we see how performing an ERO to get from \(A \xrightarrow{ERO} B \) changes the determinant.

Proposition

1. If \(A \xrightarrow{R_i\leftrightarrow R_j} B \), then \(\det(B) = -\det(A) \). i.e. swapping two rows of a matrix negates the determinant.
EROs and determinants

Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

1. If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.

2. If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c \det(A)$. i.e,
EROs and determinants

Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

1. If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.

2. If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c \det(A)$. i.e, multiplying a row by c multiplies the determinant by c.
EROs and determinants

Below we see how performing an ERO to get from \(A \xrightarrow{ERO} B \) changes the determinant.

Proposition

1. If \(A \xrightarrow{R_i \leftrightarrow R_j} B \), then \(\det(B) = -\det(A) \). i.e. swapping two rows of a matrix negates the determinant.

2. If \(A \xrightarrow{R_i = cR_i} B \), then \(\det(B) = c \det(A) \). i.e, multiplying a row by \(c \) multiplies the determinant by \(c \).

3. If \(A \xrightarrow{R_i = R_i + cR_j} B \), then \(\det(B) = \det(A) \). i.e,
Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

1. If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.

2. If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c \det(A)$. i.e, multiplying a row by c multiplies the determinant by c.

3. If $A \xrightarrow{R_i = R_i + cR_j} B$, then $\det(B) = \det(A)$. i.e,

 In particular, if two rows of A are the same, or A has a row of 0s, then $\det(A) =$
EROs and determinants

Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

1. If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.

2. If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c \det(A)$. i.e, multiplying a row by c multiplies the determinant by c.

3. If $A \xrightarrow{R_i = R_i + cR_j} B$, then $\det(B) = \det(A)$. i.e,

In particular, if two rows of A are the same, or A has a row of 0s, then $\det(A) = \cdots$

Proof sketch. Recall that $B = EA$ for some square matrix E. We need only check $\det(E) = -1, c, 1$ in cases 1), 2), 3) resp. e.g.
Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

1. If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$. i.e. swapping two rows of a matrix negates the determinant.
2. If $A \xrightarrow{R_i = cR_i} B$, then $\det(B) = c \det(A)$. i.e, multiplying a row by c multiplies the determinant by c.
3. If $A \xrightarrow{R_i = R_i + cR_j} B$, then $\det(B) = \det(A)$. i.e,

In particular, if two rows of A are the same, or A has a row of 0s, then $\det(A) =$

Proof sketch. Recall that $B = EA$ for some square matrix E. We need only check $\det(E) = -1, c, 1$ in cases 1), 2), 3) resp. e.g.

E.g. Suppose $A \in M_{44}$ has determinant 2. Find $\det(3A)$.

Daniel Chan (UNSW)
Warning: We don't compute determinants using the definition except for small or special matrices! In practice, a) we apply EROs to reduce A to row-echelon form U, b) record how we've changed the determinant (see previous slide), and c) note U is square & row-echelon \Rightarrow upper triangular so has readily computable determinant.

E.g. Find the determinant of $A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 1 & 1 & 2 \\ -1 & 2 & 0 & 1 \\ 2 & 0 & 3 \\ -1 \end{bmatrix}$.
Warning We don't compute determinants using the defn except for small or special matrices!

Example: Find the determinant of

\[
A = \begin{pmatrix}
1 & -1 & 2 & 3 \\
-1 & 1 & 1 & 2 \\
-1 & 2 & 0 & 1 \\
2 & 0 & 3 & -1
\end{pmatrix}
\]
Computing determinants in practice

Warning We don’t compute determinants using the defn except for small or special matrices!

In practice, a) we apply EROs to reduce A to row-echelon form U,

\[
\begin{pmatrix}
1 & -1 & 2 & 3 \\
-1 & 1 & 1 & 2 \\
-1 & 2 & 0 & 1 \\
2 & 0 & 3 & -1
\end{pmatrix}
\]

Daniel Chan (UNSW)
Warning We don't compute determinants using the defn except for small or special matrices!

In practice, a) we apply EROs to reduce A to row-echelon form U, b) record how we’ve changed the determinant (see previous slide),

$$
\begin{pmatrix}
1 & -1 & 2 & 3 \\
-1 & 1 & 1 & 2 \\
-1 & 2 & 0 & 1 \\
2 & 0 & 3 & -1
\end{pmatrix}
$$
Warning We don’t compute determinants using the defn except for small or special matrices!

In practice, a) we apply EROs to reduce A to row-echelon form U, b) record how we’ve changed the determinant (see previous slide), & c) note U square & row-echelon \implies upper triangular so has readily computable determinant.

Example

Find the determinant of

$$
A = \begin{pmatrix}
1 & -1 & 2 & 3 \\
-1 & 1 & 1 & 2 \\
-1 & 2 & 0 & 1 \\
2 & 0 & 3 & -1
\end{pmatrix}
$$
Computing determinants in practice

Warning We don’t compute determinants using the defn except for small or special matrices!

In practice, a) we apply EROs to reduce A to row-echelon form U, b) record how we’ve changed the determinant (see previous slide), & c) note U square & row-echelon \implies upper triangular so has readily computable determinant.

E.g. Find the determinant of $A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ -1 & 1 & 1 & 2 \\ -1 & 2 & 0 & 1 \\ 2 & 0 & 3 & -1 \end{pmatrix}$
Conclusions from the algorithm for computing determinants

We can transform A into upper echelon form U by using ERO's of form $R_i \leftrightarrow R_j$ and $R_i = R_i + cR_j$ only.

Then $\det(A) = \pm \det(U)$.

For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$.

This gives

Theorem

A square matrix A is invertible iff $\det(A) \neq 0$.

Remark

The formula for inverting 2×2-matrices generalises (see Cramer's rule in my MATH2601 notes).

It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j \& R_i = R_i + cR_j$ only.

Then $\det(A) = \pm \det(U)$. For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$. This gives Theorem: A square matrix A is invertible iff $\det(A) \neq 0$.

Remark: The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes). It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j \& R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j$ & $R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff

Remark: The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes). It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j$ & $R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$.

Theorem
A square matrix A is invertible iff $\det(A) \neq 0$.

Remark
The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes). It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j \& R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$.

Theorem
A square matrix A is invertible iff $\det(A) \neq 0$.

Remark
The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes).

It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j$ & $R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$.

This gives

Theorem

A square matrix A is invertible iff $\det(A) \neq 0$.

Remark

The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes). It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j \& R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$.

This gives

Theorem

A square matrix A is invertible iff $\det(A) \neq 0$.

Remark The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes).
Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO’s of form $R_i \leftrightarrow R_j$ & $R_i = R_i + cR_j$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff all diagonal entries are non-zero iff $\det(U) \neq 0$.

This gives

Theorem

A square matrix A is invertible iff $\det(A) \neq 0$.

Remark The formula for inverting 2×2-matrices generalises (see Cramer’s rule in my MATH2601 notes). It has $\det(A)$ in the denominator for A^{-1} and an otherwise well-defined numerator.