Goals of this chapter

In this chapter, we will answer the following geometric Questions

- How do you define and then, compute the angle between \(\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \)?

- How far is the point \(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \) from the plane \(2x - y + z = 3 \)?

- What is the area of the parallelogram in space with sides \(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \) and \(\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \)?

We will in fact, generalise many geometric notions such as angle, to \(\mathbb{R}^n \), by introducing auxiliary gadgets called the *dot (or scalar) product* and the *cross (or vector) product* of vectors.
Definition

The length of a vector

\[\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n \]

is defined as

\[|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}. \]

Sometimes the words, *modulus* or *norm* of \(\mathbf{a} \) are used instead. In \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \), \(|\mathbf{a}| \) is

- the length of the geometric vector with coordinate vector \(\mathbf{a} \),
- the distance from the origin of the point with position vector \(\mathbf{a} \).

Depending on the context, you should think of \(|\mathbf{a}| \) like this in higher dimensions too.
Angles via cosine rule

Let \(\mathbf{a} = \overrightarrow{OA} \), \(\mathbf{b} = \overrightarrow{OB} \in \mathbb{R}^n \) be non-zero. Let’s think about what the angle \(\theta = \angle AOB \) between \(\mathbf{a} \) and \(\mathbf{b} \) is by considering \(\triangle AOB \) and assuming the cosine rule is valid in \(\mathbb{R}^n \).

Cosine Rule

\[
|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}| \cos \theta.
\]

The formula for the length of a vector gives

\[
\sum_i (b_i - a_i)^2 = \sum_i a_i^2 + \sum_i b_i^2 - 2|\mathbf{a}||\mathbf{b}| \cos \theta
\]

Cancelling gives that

\[
|\mathbf{a}||\mathbf{b}| \cos \theta = \sum_i a_i b_i
\]

\[
\cos \theta = \frac{\sum_i a_i b_i}{|\mathbf{a}||\mathbf{b}|}
\]

We can solve for \(\theta \) as long as RHS lies in \([−1, 1]\) (see Cauchy-Schwarz thm later).
Remarks concerning above thought experiment

- The distance function \(d(a, b) = \sum_i (b_i - a_i)^2 \) gives you information not just about lengths, but angles too.
- It’s actually better not to base our theory on this function, but on the numerator expression for \(\cos \theta \), i.e. \(\sum_i a_i b_i \).

Definition

For \(a, b \in \mathbb{R}^n \), we define the *dot* or *scalar product* of \(a, b \) to be

\[
a \cdot b = \sum_i a_i b_i.
\]

We prove later

Theorem (Cauchy-Schwarz)

\[
-|a||b| \leq a \cdot b \leq |a||b|.
\]
Angles

We may now define

Definition

The *angle* between non-zero vectors \(\mathbf{a} = \overrightarrow{OA}, \mathbf{b} = \overrightarrow{OB} \in \mathbb{R}^n \) is

\[
\theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||} \right).
\]

Of course, this recovers the old definition in \(\mathbb{R}^2, \mathbb{R}^3 \) since the cosine rule is fine there.

Example. Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \end{pmatrix} \).

What is the angle between \(\mathbf{a} \) and \(\mathbf{b} \)?
Properties of the dot product

Proposition

Suppose \(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^n \). Then

1. \(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \).
2. \(\mathbf{a} \cdot (\lambda \mathbf{b}) = (\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) \).
3. \(\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \).
4. \(\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \geq 0 \).

Note the last, means that the dot product gives the length function and thus angles can be written out in terms of dot products alone too.

To prove these, just write things out using the definition!
We prove

Theorem (Cauchy-Schwarz)

\[-|\mathbf{a}| |\mathbf{b}| \leq \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|.\]

Proof. The inequality holds when \(\mathbf{b} = \mathbf{0} \) so we assume \(\mathbf{b} \neq \mathbf{0} \). Consider the real function of (the real variable) \(\lambda \)

\[q(\lambda) = |\mathbf{a} - \lambda \mathbf{b}|^2 \geq 0.\]

\[q(\lambda) = (\mathbf{a} - \lambda \mathbf{b}) \cdot (\mathbf{a} - \lambda \mathbf{b}) \]

\[= |\mathbf{a}|^2 - 2\lambda \mathbf{a} \cdot \mathbf{b} + \lambda^2 |\mathbf{b}|^2. \quad (1)\]

The discriminant of this quadratic function of \(\lambda \) must be non-positive, hence

\[4(\mathbf{a} \cdot \mathbf{b})^2 \leq 4|\mathbf{a}|^2 |\mathbf{b}|^2. \]
Orthogonality

Definition

Two vectors $a, b \in \mathbb{R}^n$ are said to be *orthogonal* if $a \cdot b = 0$ i.e. the angle between them is $\theta = 0$.

Example.

\[
\begin{pmatrix}
1 \\
1 \\
-1 \\
1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
-2 \\
1 \\
1 \\
2
\end{pmatrix}
\] are orthogonal.

Theorem (Pythagoras)

If $a, b \in \mathbb{R}^n$ are orthogonal then

\[
|a + b|^2 = |a|^2 + |b|^2.
\]

Proof.
E.g. Show that the altitudes of $\triangle ABC$ are concurrent.

A Let P be the intersection of the altitudes through A and B. It suffices to show that PC is an altitude too.
Orthonormal sets of vectors

Definition

The vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n \) form an orthogonal set if they are mutually orthogonal. If furthermore, they all have length 1, we say they are orthonormal.

Equivalently, \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) are orthonormal if

\[
\mathbf{v}_i \cdot \mathbf{v}_j = \delta_{ij} := \begin{cases}
1, & \text{if } i = j, \\
0, & \text{if } i \neq j.
\end{cases}
\]

[\(\delta_{ij} \) is called the Kronecker delta symbol.]

The standard basis vector \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \) obviously are orthonormal.

E.g. The vectors \(\mathbf{v}_1 = \begin{pmatrix} 1 \\ \sqrt{2} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \) are orthonormal.
Linear combinations of orthonormal vectors

E.g. Express \(\begin{pmatrix} 2 \\ -1 \end{pmatrix} \) as a linear combination of \(\mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \), \(\mathbf{v}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \) (if possible).

A Possible because
Point-normal forms for planes in \mathbb{R}^3

We can prescribe a plane P by giving a point a on the plane, and its orientation which is usually done by giving 2 non-parallel vectors giving “directions”. In \mathbb{R}^3 the orientation, can also be given by a normal vector n, i.e. so n is perpendicular to every vector parallel to the plane.

The plane P is the set of all point x such that

$$n \cdot (x - a) = 0. \quad \text{(PN)}$$

or equivalently

$$n \cdot x = n \cdot a \quad \text{(3)}$$

These are called the point-normal form of the plane.

We can re-write (3) in Cartesian form

$$n_1x_1 + n_2x_2 + n_3x_3 = b$$

where b is the constant $n \cdot a$.
Example: point-normal form

E.g. Find the Cartesian form for the plane in \mathbb{R}^3 with normal \[
\begin{pmatrix}
1 \\
-1 \\
2
\end{pmatrix}
\] passing through \[
\begin{pmatrix}
1 \\
1 \\
3
\end{pmatrix}.
\]

E.g. Find a normal to $3x - 2y + 5z = 7$.
Let $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n - \mathbf{0}$. Informally, the **projection of \mathbf{b} onto \mathbf{v}** is obtained by dropping a perpendicular from the head of \mathbf{b} to the line through O in the direction \mathbf{v}.

This projection has form $\mathbf{c} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{R}$. To determine λ, we use trig to see $|\mathbf{c}| = |\mathbf{b}| \cos \theta$ where $\theta = \text{angle between } \mathbf{b}, \mathbf{v}$. Hence

$$\mathbf{c} = |\mathbf{b}| \cos \theta \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{b} \cdot \mathbf{v}}{|\mathbf{v}|} \frac{\mathbf{v}}{|\mathbf{v}|}.$$
The above suggests,

Definition

For $b \in \mathbb{R}^n$ and $v \in \mathbb{R}^n - \mathbf{0}$, the *projection of b onto v* is

$$\text{proj}_v b = \left(\frac{b \cdot v}{|v|^2}\right)v.$$

E.g. Find $\text{proj}_v b$ when $v = \begin{pmatrix} 1 \\
2 \\
2 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\
0 \\
-1 \end{pmatrix}$.
Properties of the projection

Our definition agrees with the procedure of dropping a perpendicular by

Proposition

\[\text{proj}_v \mathbf{b} \text{ is the unique vector of the form } \lambda \mathbf{v} \text{ such that } \mathbf{b} - \lambda \mathbf{v} \text{ is orthogonal to } \mathbf{v}. \]

Proof.

\[0 = (\mathbf{b} - \lambda \mathbf{v}) \cdot \mathbf{v} = \mathbf{b} \cdot \mathbf{v} - \lambda |\mathbf{v}|^2 \]

has unique soln

\[\lambda = \frac{\mathbf{b} \cdot \mathbf{v}}{|\mathbf{v}|^2}. \]

Proposition

\[\text{proj}_v \mathbf{b} \text{ is the unique point on the line } \mathbf{x} = \lambda \mathbf{v}, \lambda \in \mathbb{R}, \text{ closest to } \mathbf{b}. \]

Proof.

It’s best to see this with a picture and use Pythagoras.
Distance between a point and a line

E.g. Find the point on the line

\[
x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad \lambda \in \mathbb{R},
\]

closest to \(\mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \).

Find this distance from \(\mathbf{b} \) to the line.
Distance from a point to a plane

E.g. Find the distance between the plane $P : x_1 + x_2 + x_3 = 0$ and $b = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$.

A If c gives the point on P which is closest to b, then our argument using Pythagoras thm says that we should have $b - c$ is orthogonal to P i.e. $b - c$ is parallel to
Determinants

We will look at determinants more fully in chapter 5. Here’s what we need for now. Below \(a_i, b_i, e_i \) are real (and later complex) scalars.

Definition

We define the \(2 \times 2 \) determinant by

\[
\begin{vmatrix}
 a_1 & a_2 \\
 b_1 & b_2 \\
\end{vmatrix} = a_1 b_2 - a_2 b_1.
\]

E.g.

The \(3 \times 3 \) determinant is defined by

\[
\begin{vmatrix}
 e_1 & e_2 & e_3 \\
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
\end{vmatrix} = e_1 \begin{vmatrix}
 a_2 & a_3 \\
 b_2 & b_3 \\
\end{vmatrix} - e_2 \begin{vmatrix}
 a_1 & a_3 \\
 b_1 & b_3 \\
\end{vmatrix} + e_3 \begin{vmatrix}
 a_1 & a_2 \\
 b_1 & b_2 \\
\end{vmatrix}.
\]
Determinants and row swaps

Proposition

If you swap two rows of a determinant, it changes sign e.g.

\[
\begin{vmatrix}
e_1 & e_2 & e_3 \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
\end{vmatrix} = -
\begin{vmatrix}
e_1 & e_2 & e_3 \\
b_1 & b_2 & b_3 \\
a_1 & a_2 & a_3 \\
\end{vmatrix}
\]

In particular, the determinant is 0 if 2 rows are the same (swapping them both negates and keeps them the same).

Proof For 2 × 2-matrices

\[
\begin{vmatrix}
b_1 & b_2 \\
a_1 & a_2 \\
\end{vmatrix} = b_1 a_2 - b_2 a_1 = -
\begin{vmatrix}
a_1 & a_2 \\
b_1 & b_2 \\
\end{vmatrix}.
\]

For 3 × 3
Cross product

For \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^3 \), the cross or vector product of \(\mathbf{a} \) and \(\mathbf{b} \) is the vector

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & a_3
\end{vmatrix}
\]

\[
= \mathbf{e}_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{e}_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \mathbf{e}_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}
\]

N.B. The second term is not really well-defined, but is a useful mnemonic.

E.g. Find \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} \).

N.B. There are higher dimensional versions of the cross product, but they are much more complicated and not as useful.
Proposition

For \(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3 \) and \(\lambda \in \mathbb{R} \) we have

1. \(\mathbf{a} \times \mathbf{a} = \mathbf{0} \) (by row swapping & determinants).
2. \(\times \) is distributive:
 \[
 \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})

 (\mathbf{a} + \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c}).
 \]
3. \((\lambda\mathbf{a}) \times \mathbf{b} = \lambda(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (\lambda\mathbf{b}) \)

Proof. Just expand both sides with the defn! Alternately, wait until we’ve looked at more properties of determinants in chapter 5.

Warning

- \(\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \) (by row swapping of determinants) so \(\times \) is not commutative!
- \((\mathbf{e}_1 \times \mathbf{e}_1) \times \mathbf{e}_2 = \mathbf{0} \times \mathbf{e}_2 = \mathbf{0} \) but
The magnitude of $\mathbf{a} \times \mathbf{b}$

Theorem

Suppose that $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ are nonzero, with angle θ between them. Then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta.$$

Proof. Remember that $\theta \in [0, \pi]$ in \mathbb{R}^3 so $\sin \theta \geq 0$. Thus, it is enough to show that

$$|\mathbf{a} \times \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta.$$

Remembering the definition of θ:

$$\sin^2 \theta = 1 - \cos^2 \left(\cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right) \right) = 1 - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right)^2$$

and so

$$|\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta = |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2.$$

Now get MAPLE to expand out

$$|\mathbf{a} \times \mathbf{b}|^2 - (|\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2)$$

and check it is zero!
Proposition

The area of the parallelogram with sides \(\mathbf{a}, \mathbf{b} \) is \(|\mathbf{a} \times \mathbf{b}| \).

Proof

The area of the parallelogram is

\[A = \text{base} \times \text{perp height} = |\mathbf{a}| |\mathbf{b}| \sin \theta. \]

Thm previous slide gives the result.

E.g. Find the area of the parallelogram with vertices at \((1,1), (4,2), (2,3)\) and \((5,4)\).
Scalar triple product

Let \(\mathbf{a}, \mathbf{b}, \mathbf{e} \in \mathbb{R}^3 \).

Proposition-Definition

The scalar

\[
\mathbf{e} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}
\]

It is called the *scalar triple product of \(\mathbf{e}, \mathbf{a}, \mathbf{b} \).*

Proof If \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \) then

\[
\mathbf{e} \cdot (\mathbf{a} \times \mathbf{b}) = e_1 c_1 + e_2 c_2 + e_3 c_3 = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.
\]

E.g. Find \(e_1 \cdot (e_2 \times e_3) \).
Direction of $\mathbf{a} \times \mathbf{b}$

Row swapping of determinants give the following

Proposition

1. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.
2. $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0 = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{b})$.

Part 2) gives

Proposition

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.

N.B This proposition and our formula for $|\mathbf{a} \times \mathbf{b}|$ determines $\mathbf{a} \times \mathbf{b}$ up to a choice of two vectors.

The choice of which one is given by the *right hand rule*.
There are many geometric problems in \mathbb{R}^3 where one needs to find a vector which is orthogonal to two given vectors.

Example. Find a point-normal, and hence a Cartesian form for the plane

$$
\mathbf{x} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.
$$

A point on the plane is $\mathbf{a} =$

A vector normal to the plane is $\mathbf{n} =$

Thus a point-normal form is
Problem. What is the shortest distance between the two lines $L_1, L_2 \subset \mathbb{R}^3$?

Our argument via Pythagoras thm shows that the shortest line segment joining the two lines needs to be orthogonal to both the lines, that is orthogonal to the two direction vectors.

Proposition

Let \mathbf{n} be orthogonal to both lines. Then the shortest distance between the lines equals the length of the vector $\text{proj}_n (\mathbf{a}_1 - \mathbf{a}_2)$, where \mathbf{a}_j is any point on L_j.

Why?
Example: distance between lines

Problem. What is the shortest distance between the two lines

\[
L_1 : \quad \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \quad \lambda \in \mathbb{R} \quad \text{and} \quad L_2 : \quad \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}, \quad \mu \in \mathbb{R}
\]

A Here we can take \(\mathbf{n} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -2 \\ -8 \end{pmatrix} \), and \(\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \), \(\mathbf{a}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \).

so \(\mathbf{a}_1 - \mathbf{a}_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \).

The shortest distance between the lines is

\[
|\text{proj}_n(\mathbf{a}_1 - \mathbf{a}_2)| = \frac{|\mathbf{n} \cdot (\mathbf{a}_1 - \mathbf{a}_2)|}{|\mathbf{n}|^2} = \frac{|\mathbf{n} \cdot (\mathbf{a}_1 - \mathbf{a}_2)|}{|\mathbf{n}|}
\]

\[
= \frac{|\mathbf{n} \cdot (\mathbf{a}_1 - \mathbf{a}_2)|}{|\mathbf{n}|}
\]
A parallelipiped is a 3-dim version of a parallelogram.

Consider a parallelipiped P with edges $\mathbf{a} = \overrightarrow{OA}, \mathbf{b} = \overrightarrow{OB}, \mathbf{c} = \overrightarrow{OC}$. Let $\mathbf{n} = \mathbf{b} \times \mathbf{c}$. If the base of P is the parallelogram sides \mathbf{b}, \mathbf{c}, then the perpendicular height P is the length of the projection of \mathbf{a} onto \mathbf{n}. Hence

$$\text{Volume of } P = \text{area base} \times \text{perp. height}$$

$$= | \mathbf{b} \times \mathbf{c} | | \text{proj}_n \mathbf{a} |$$

$$= | \mathbf{b} \times \mathbf{c} | \left| \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{| \mathbf{b} \times \mathbf{c} |} \right|$$

$$= | \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) |.$$
Example: volume of parallelopiped

Example. Find the volume of a parallelopiped with vertices at

\[
\begin{pmatrix} 1 \\ 7 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}
\]

adjacent to the vertex \(\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \).