Lecture 4: Complex Polynomials

Remainder & Factor thm

Defn A complex polynomial of degree n is a fn $p : \mathbb{C} \rightarrow \mathbb{C}$ of the form

$$p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$$

for some $a_0, \ldots, a_n \in \mathbb{C}$ with $a_n \neq 0$.

If the coeff a_0, \ldots, a_n are real then we say $p(z)$ is a real polynomial.

Real poly will also refer to the real-valued fn $p : \mathbb{R} \rightarrow \mathbb{R}$ obtained by restricting the domain to \mathbb{R}.

Remainder Thm Let $p(z)$ be a poly & $\alpha \in \mathbb{C}$. The remainder r on dividing $p(z)$ by $z - \alpha$ is $r = p(\alpha)$.
Proof If quotient is \(q(z) \) then
\[
p(z) = \]
\[
\therefore p(\alpha) = \]

An immediate corollary is

Factor Thm Let \(p(z) \) be a poly \& \(\alpha \in \mathbb{C} \)

Then \(z - \alpha \) is a factor of \(p(z) \) iff \(p(\alpha) = 0 \)
i.e. \(\alpha \) is a root of \(p(z) \).

Factorising over \(\mathbb{C} \)

Fund Thm of Algebra (Gauss) Let \(p(z) = a_nz^n + \ldots + a_1z + a_0 \) be a complex poly of degree \(n > 0 \). Then \(p(z) \) has a complex root, so applying factor thm and induction we see we can express

\[
(*) \quad p(z) = a_n(z - \alpha_1)(z - \alpha_2)\ldots(z - \alpha_n)
\]

where \(\alpha_1, \ldots, \alpha_n \) are all the roots of \(p(z) \) (sometimes repeated).

Furthermore, the factorisation in \((*)\) is unique up
to permuting factors.

Defn The number of times a root α_i occurs in the factorisation is called the multiplicity of the root.

e.g. 1 $z^4 + 2z^2 + 1$

So $i, -i$ are roots of multiplicity 2.

e.g. 2 Factorise $p(z) = 4 - z^6$ over \mathbb{C}.

A Use thm. Find solns to $p(z) = 0$ or equivalently $z^6 = 4$.

$|z|^6 = 6 \arg z = \Rightarrow \arg z =$

So roots are $z = \sqrt[3]{2}e^{\pm 2\pi i/3}, \sqrt[3]{2}e^{\pm \pi i/3}, \sqrt[3]{2}, \sqrt[3]{2}e^{i\pi} = -\sqrt[3]{2}$.
\[4 - z^6 = -(z - \sqrt[3]{2}e^{2\pi i/3})(z - \sqrt[3]{2}e^{-2\pi i/3}) \]
\[\times (z - \sqrt[3]{2}e^{\pi i/3})(z - \sqrt[3]{2}e^{-\pi i/3})(z - \sqrt{2})(z + \sqrt{2}) \]

Factorising over \(\mathbb{R} \)

Use

Propn

a) Let \(p(z) = \sum a_j z^j \) be a real poly & \(z = \alpha \) be a complex root. Then \(\bar{\alpha} \) is also a root.

b) \((z - \alpha)(z - \bar{\alpha}) = z^2 - (2\text{Re } \alpha)z + |\alpha|^2\)

which is real.

Proof 1): If \(0 = p(\alpha) = \)
then \(0 = \sum \)

e.g. 2 cont’d Factorise \(4 - z^6 \) over \(\mathbb{R} \).

A Collect factors corresp to complex conjugate roots.

\((z - \sqrt[3]{2}e^{\pi i/3})(z - \sqrt[3]{2}e^{-\pi i/3}) = \)
\(z^2 - (2\text{Re } \sqrt[3]{2}e^{\pi i/3})z + |\sqrt[3]{2}e^{\pi i/3}|^2 \)
\[z^2 - \sqrt[3]{2}z + \sqrt[3]{4}. \]

Sim \((z - \sqrt[3]{2}e^{2\pi i/3})(z - \sqrt[3]{2}e^{-2\pi i/3}) = \]

\[4 - z^6 = -(z - \sqrt[3]{2})(z + \sqrt[3]{2}) \times (z^2 - \sqrt[3]{2}z + \sqrt[3]{4})(z^2 + \sqrt[3]{2}z + \sqrt[3]{4}). \]

Rem This procedure shows you can factorise any real poly into real linear & quadratic factors.

Application to polynomial interpolation

Corollary a) If poly \(p(z), q(z) \) have degrees \(\leq n \) & agree on \(n + 1 \) different values \(z = \alpha_1, \ldots, \alpha_{n+1} \) i.e. \(p(\alpha_1) = \)
then \(p(z) = q(z) \).

b) Any 2 poly which agree on an infinite set are the same.

Proof: Clear a) \(\implies \) b). Note \(g(z) := p(z) - q(z) \)
has degree $\leq n$.

It also has more than n roots (namely, $\alpha_1, \ldots, \alpha_{n+1}$) so it must be 0.

e.g. 2 Given 3 distinct points $(x_1, y_1), (x_2, y_2)$ & (x_3, y_3), there is at most 1 parabola of the form

$$y = p(x)$$

going through those points.

Why? If $y = q(x)$ also went through those points then

Symmetric polynomials in the roots

Defn A poly $p(x_1, \ldots, x_n)$ in var x_1, \ldots, x_n is symmetric if it remains the same on swapping any 2 variables.

e.g. 4 In 3 var,
\[x_1 + x_2 + x_3 \] is symmetric
\[x_1x_2 + x_2x_3 \] is not because

e.g. 5 Suppose \(z^2 + bz + c \) has roots \(\alpha, \beta \in \mathbb{C} \).
\[
z^2 + bz + c = (z - \alpha)(z - \beta) = z^2 - (\alpha + \beta)z + \alpha\beta.
\]
\[\implies \text{sum of roots} = \]
& \text{product of roots} =

More generally,

Prop Let \(\alpha_1, \ldots, \alpha_n \) be the roots (with multiplicity) of
\[
p(z) = a_0 + a_1z + \ldots + a_nz^n.
\]
Then \(\frac{a_{n-j}}{a_n} = (-1)^j \) sum of all products of \(j \) roots.

Proof: Just expand

N.B. The \(a_i \)'s are symmetric poly in the \(\alpha_i \)'s since
\(p(z) \) remains the same on swapping any two linear
factors in its factorisation.

Thm Any symmetric poly in the roots of $p(z)$ is a poly in the coeff of $p(z)$.

No proof.

e.g. 6 If $z^3 + 2z^2 + 3z + 4$ has roots $\alpha_1, \alpha_2, \alpha_3$ then

$$\alpha_1^2 + \alpha_2^2 + \alpha_3^2$$

is symmetric and equals