Lecture 20: DEs and diagonalisation

Aim lecture See how diagonalisation is useful for solving differential eqns.

Motivation

e.g. 1 \(y_1(t) = \) popn of hobbits in \(y_2(t) = \) popn of orcs

If 2 popn kept separate as here then popn growth governed by a pair of DEs which typically looks something like:

\[
\begin{align*}
 y_1'(t) &= 3y_1(t) \\
 y_2'(t) &= 2y_2(t)
\end{align*}
\]

(*)

Soln: Easy, solve 2 eqns separately

\(y_1(t) = \)

Suppose now we put the two popns together in
Typical DEs describing popn growth is
\[y_1'(t) = 3y_1(t) - 2y_2(t) \]
\[y_2'(t) = -y_1(t) + 2y_2(t) \] (†)

These are “coupled” DEs i.e. \(y_1', \ y_2' \) each depend on both \(y_1 & y_2 \). We’ll use diag to

N.B. Growth rate of hobbit popn depends positively on hobbit popn &

Notn \(y(t) = \)

\[y'(t) = \frac{dy}{dt} := \]

In e.g. 1, we can write
\[
\begin{pmatrix}
3y_1 - 2y_2 \\
-y_1 + 2y_2
\end{pmatrix}
= \\
\begin{pmatrix}
3 -2 \\
-1 2
\end{pmatrix}.
\]

so \(y'(t) = A y(t) \) where \(A = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix} \).

Note In decoupled case (*) above, still have \(y'(t) = A y(t) \) but now
\[A = \]

Diagonalisation & decoupling DEs

Consider more generally
\[y(t) = \]

& system of \(n \) linear DEs
\[y'(t) = A y(t) \]
where \(A \in M_{n,n}(\mathbb{R}) \).
Lemma For $C \in M_{n,n}(\mathbb{R})$
\[
\frac{d}{dt}(C\,y) = C\frac{dy}{dt}.
\]

Proof: Clear from case $n = 2$. Suppose
\[
C = \begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\]
\[
\frac{d}{dt}(C\,y) =
\]

To solve $y'(t) = A\,y(t)$, suppose we can diag $A = M\,D\,M^{-1}$ with $M = (f_1 \ldots f_n)$
\& $D =$
Thm 1) If we change variables to
\[x(t) = M^{-1} y(t) \]
then get decoupled eqn
\[(*) \quad \frac{dx}{dt} = D x \]

2) Soln to (*) is
\[x_i(t) = \alpha_i e^{\lambda_i t} \text{ for } i = 1, \ldots, n \]
& scalars \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \).

3) Soln to original DE \(y'(t) = Ay(t) \) is
\[y(t) = M x(t) = \alpha_1 e^{\lambda_1 t} f_1 + \ldots + \alpha_n e^{\lambda_n t} f_n \]
where \(f_1, \ldots, f_n \) are e-vectors with correspond e-values \(\lambda_1, \ldots, \lambda_n \).

Proof: 1) \(y'(t) = Ay = MDM^{-1} y = MD x \).
Also, lemma \(\implies \frac{d}{dt}(M x(t)) = \)

Equating & noting \(M \) invertible we see \(\frac{dx}{dt} = D x \).

2) (*) corresponds to system of linear DEs
cont’d

3) Just multiply matrices.
\[y(t) = M \, x(t) = (f_1 \ldots f_n) \]

\[= \alpha_1 e^{\lambda_1 t} f_1 + \ldots + \alpha_n e^{\lambda_n t} f_n \]

Example

e.g. 1 completed

We diag \(A \)

\[0 = \det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -2 \\ -1 & 2 - \lambda \end{vmatrix} \]

The e-values are 4,1.

E-vectors?
\[\lambda = 4 : \ker(A - \lambda I) = \]

An e-vector is
\[\lambda = 1 : \ker(A - \lambda I) = \]

An e-vector is
Thm 3) \[\implies \]
\[y(t) = \]

for some scalars \(\alpha_1, \alpha_2 \).
i.e. \[y_1(t) = \]
\[y_2(t) = \]

e.g. 2 Suppose in e.g. 1 that initial popn is \[y(0)^T = (4000, 1000) \]. Solve the IVP.

Ans: We need only solve for \(\alpha_1, \alpha_2 \).
From Gaussian elim or guessing see

\[\alpha_1 = \]

The soln is thus

\[y(t) = \]

e.g. 3 What happens in e.g. 2 as \(t \to \infty \)?

Nasty hobbits!

N.B. Key to limiting behaviour is e-value of max magnitude.

Second order DEs

We can convert any 2nd order const coeff linear ODE into a pair of linear ODEs in 2 var as in following
E.g. 4 Solve IVP

\[y'' - 3y' + 2y = 0 \ , \quad y(0) = 2, \ y'(0) = 3 \]

Ans: Let \(y_1 = y, y_2 = y' \)

\[y_1' = y' = y_2 \]
\[y_2' = y'' = -2y + 3y' = -2y_1 + 3y_2 \]

i.e. \(y' = \)

Diag \(A = \)

\[\det(A - \lambda I) = \]

Hence e-values are 2,1.

E-vectors:

\(\lambda = 2 : \ker(A - \lambda I) = \)
An e-vector is
\[\lambda = 1 : \ker(A - \lambda I) = \]

An e-vector is
Hence, (from thm 3)) general soln is
\[y(t) = \]

Need now find integration constants.