Lecture 13: Data fitting. Review functions.

Aim Lecture We observe role of linear algebra in data fitting. We review invertible fns.

Motivational example

e.g. 1 Lex believes

Experiment:

<table>
<thead>
<tr>
<th>r</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>9.7</td>
<td>9.2</td>
<td>7.9</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Typical questions:

Interpolation: estimate strength when r is between data values, e.g. $r = 3.5$

Extrapolation: estimate strength when r is outside range of data, e.g. $r = 5$.

Objective Find a cubic fn

$$y(r) = a_0 + a_1r + a_2r^2 + a_3r^3$$ such that
\(y(1) = 9.7, \ y(2) = \)

Point These 4 eqns give 4 lin eqns in \(a_0, a_1, a_2, a_3 \) with which to determine poly \(y(r) \). Can then use \(y(r) \) to estimate strength for other values of \(r \) other than 1, 2, 3, 4.

Polynomial interpolation

Consider data points \((t_0, y_0), \ldots, (t_n, y_n) \in \mathbb{R}^2\) where \(t_0, \ldots, t_n \) are distinct.

Seek polynomial

\[
y(t) = \lambda_0 + \lambda_1 t + \ldots + \lambda_n t^n
\]

s.t. \(y_i = y(t_i) \)

Notn: \(t = (t_0, t_1, \ldots, t_n)^T \)

\[
y(t) = (y(t_0), y(t_1), \ldots, y(t_n))^T
\]

\(y = \)
\(\lambda = \)

Want to find fn \(y(t) \) with \(y(t) = y \). If

\[
A := \begin{pmatrix}
1 & t_0 & t_0^2 & \ldots & t_0^n \\
1 & t_1 & t_1^2 & \ldots & t_1^n \\
\vdots \\
1 & t_n & t_n^2 & \ldots & t_n^n
\end{pmatrix}
\]

then \(A \lambda = \)

\(= y(t) \)

Upshot The polynomials \(y(t) \) which “fit the data”, i.e. with \(y(t) = y \)

are those whose coeff \(\lambda_0, \lambda_1, \ldots, \lambda_n \) solve \(A \lambda = y \).

Thm 1 \(A \) is invertible so there’s a unique poly
\(y(t) = \lambda_0 + \lambda_1 t + \ldots + \lambda_n t^n \)

in \(\mathbb{P}_n \) s.t. \(y(t_i) = y_i \). It’s coeff are given \(\lambda = \)

Proof: Cor a) lect 4 \(\implies \) at most 1 poly of degree
\(\leq n \) can fit the data.

\[\therefore \text{if } A \lambda = \mathbf{y} \text{ has solns then it is unique.} \]

\[\therefore \text{columns of} \]

\[\therefore \text{row-echelon form has all} \]

But \(A \) is square so all rows are leading too and \(A \) must be invertible.

\textbf{N.B.} \(\dim \mathbb{P}_n = \text{no. data points.} \)

\textbf{e.g. 1 cont’d} see MATLAB lexl.m

Data points: \((t_i, y_i) = \)
\((1, 9.7), (2, 9.2), (3, 7.9), (4, 4.9) \)

\(\mathbf{t} = (1, 2, 3, 4)^T, \mathbf{y} = \)

\(A = \)

The coeff of the cubic fn \(y(t) \) which fits the data is

\(\lambda = A^{-1} \mathbf{y} = \)
i.e. \(y(t) = \)

\textbf{Lagrange polynomials}

Previously found \(y(t) \) by finding
its coeff = coords wrt basis

Here construct more natural basis.

Consider \(\mathbf{t} = (t_0, \ldots, t_n)^T \) with \(t_i \) distinct.

For \(j = 0, \ldots, n \) consider Lagrange polynomials
\[
P_j(t) := \prod_{k \neq j} \frac{t - t_k}{t_j - t_k} \in \mathbb{P}_n
\]

This is a product of \(n \) linear factors.

\textbf{e.g. 2} If \(\mathbf{t} = (1, 2, 3) \) then

\[
P_0(t) = \frac{(t-t_1) \ (t-t_2)}{(t_0-t_1) \ (t_0-t_2)}
\]

\[
P_1(t) = \]

\[
P_2(t) = \]

\textbf{Thm 2 a)} \(P_j(t_j) = \)
b) \(P_j(t_i) = \)

c) \(B = \{ P_0(t), \ldots, P_n(t) \} \) is a basis for \(\mathbb{P}_n \).

d) If \(y(t) \in \mathbb{P}_n \) fits the data i.e. \(y(t) = y \) then

\[
(*) \quad y(t) = y_0 P_0(t) + \ldots + y_n P_n(t).
\]

i.e. \([y(t)]_B = (y_0, \ldots, y_n)^T = y \).

Proof: a) & b) follow on substn.

c) \(\dim \mathbb{P}_n = n + 1 \). \(B \subset \mathbb{P}_n \) also has \(n + 1 \) vectors so suffice show it is lin indep.

Suppose \(\lambda_0 P_0(t) + \ldots + \lambda_n P_n(t) = 0 \).

For any \(i = 0, \ldots, n \),

\[
0 = \lambda_0 P_0(t_i) + \ldots + \lambda_i P_i(t_i) + \ldots + \lambda_n P_n(t_i)
\]

\[
\therefore P_0(t), \ldots, P_n(t) \text{ are lin indep. } \therefore B \text{ is a basis.}
\]

d) Just note

\[
y_0 P_0(t_i) +
\]

so both sides of (*) have the same values for the
$n+1$ inputs t_0, \ldots, t_n. But both sides are also polys of degree $\leq n$ so, since they agree for $n+1$ different values, they must be the same.

N.B. Thm 2d) means don’t need to solve eqns to find $y(t)$. BUT you need to work to compute $P_0(t), \ldots, P_n(t)$.

e.g. 1 again If $t = (1, 2, 3, 4)^T$ then desired cubic fn can also be written as

$$y(t) = 9.7P$$

$P_0(t), P_1(t), P_2(t), P_3(t)$ are the appropriate Lagrange polys.

Interpolation by general functions

Gen setup. Consider data points

$$(t_1, y_1), \ldots, (t_n, y_n)$$

Let $\phi_1, \ldots, \phi_n \in \mathcal{R}[\mathbb{R}]$ be lin indep.

Q Find $y(t) \in \text{Span}(\phi_1, \ldots, \phi_n)$
s.t. $y(t_i) = y_i$ for all i i.e. $y(t) = y$.

As in poly case, write

$y(t) = \lambda_1 \phi_1 + \ldots + \lambda_n \phi_n.$

Then $y(t) = A\lambda$ so solving for $y(t)$ amounts to solving $A\lambda = y$.

e.g. 2 Market with price trend anticipation.

Price $p(t)$ at time t governed by a 2nd order ODE like

$$\frac{d^2 p}{dt^2} - 3\frac{dp}{dt} + 2p = 0$$

Find $p(t)$ if $p(0) = 7, p(1) = 8$

Char eqn $\lambda^2 - 3\lambda + 2 = 0$

$$\implies p(t) = \lambda_1 e^t + \lambda_2 e^{2t} \in \text{Span}(e^t, e^{2t})$$

Now just solve for λ_1, λ_2 using
Invertible functions

Recall following defns from calculus regarding a function $f : X \to Y$.

Defn 1) We say that f is one-to-one (1-1) or injective if for any $y \in Y$, the soln to $f(x) = y$ is
i.e. $f(x) = f(x') \implies$

2) $f : X \to Y$ is onto or surjective if for any $y \in Y$, a soln to $f(x) = y$

i.e. $\text{im } f$

Recall also from calculus

Facts a) A fn $f : X \to Y$ is invertible iff f is 1-1 &

b) In this case, the eqn $f(x) = y$ always has a
denoted $x = c) f \circ f^{-1} =

e.g. \ 3 \ f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \ \text{defined by} \ f(x_1, x_2) = (x_2, 2x_1) \ \text{is invertible with inverse} \ f(y_1, y_2) =$