Lecture 1: Complex Number Basics

Aim Lecture Extend the real number system to complex number system which includes a square root of -1 denoted i.

Complex numbers

(Crash course only, see notes for details). We won’t define complex numbers. For us, a complex number z will be a number of the form $a + bi$ where $a, b \in \mathbb{R}$ and i is a new number s.t. $i^2 = 1$.

The expression $a + bi$ is called the *Cartesian form* for z. The set of complex numbers is denoted \mathbb{C}.

We can $+$, $-$, \times complex numbers to get a complex number. Below $a, a', b, b' \in \mathbb{R}$.

Add $(1 + 2i) + (3 + 5i) = 4 + 7i$.

In gen, $(a + bi) + (a' + b'i) =$
Subtrn \((1 + 2i) - (3 + 5i) = -2 - 3i.\)

In gen, \((a + bi) - (a' + b'i) = \)

Multn \((1 + 2i)(3 + 4i) = 1(3 + 4i) + 2i(3 + 4i) = 3 + 4i + 6i + 8i^2 = 3 + 10i - 8 = -5 + 10i.\)

In gen, \((a + bi)(a' + b'i) = \)

Rem (for former MATH1081 students) The best defn of a complex number is an equivalence class of real polynomials in \(i\) where \(p(i) \sim q(i) \text{ iff } (i^2 + 1)|p(i) - q(i).\)

How’s \(\mathbb{C}\) a number system?

Any \(x, y, z \in \mathbb{C}\) obey following standard laws of arithmetic.

1. **Associative Laws:**
 \[(x + y) + z = x + (y + z), \quad (xy)z = \]

2. **Commutative Laws:**
\(x + y = y + x, \ xy \)

3. Distributive Law:
\(x(y + z) = xy + xz \)

Rem 1. \(\implies \) it doesn’t matter how you bracket if you stick to just adding or just multiplying. You need the brackets when you add and multiply.

Real and imaginary parts

Defn Let \(z = a + bi \in \mathbb{C}, a, b \in \mathbb{R} \).

Its real part is \(\text{Re } z = a \).

Its imaginary part is \(\text{Im } z = \)

e.g. \(\text{Re } 4 - 5i = \)

Thm Let \(a, a', b, b' \in \mathbb{R} \). If \(a + bi = a' + b'i \) then \(a = a', b = b' \) i.e. complex numbers are uniquely determined by their real & imaginary parts.

Proof: \(a - a' = b'i - bi = \)
\[(a - a')^2 = \]

\[\therefore a = a', b = b'.\]

Conjugation & Division

Defn Let \(z = a + bi \in \mathbb{C}, a, b \in \mathbb{R}. \)

Its complex conjugate is \(\bar{z} = a - bi. \)

e.g. \(5 - i = \)

Formula \(z\bar{z} = (a + bi)(a - bi) = a^2 - b^2i^2 \)

so \(z\bar{z} = a^2 + b^2. \)

This is real!!

Division of complex numbers. Trick is to multiply top & bottom by conjugate of the denominator as follows.

\[
\frac{1+2i}{3+4i} = \frac{1+2i(3-4i)}{3+4i(3-4i)} = \frac{(1+2i)(3-4i)}{(3+4i)(3-4i)}
\]

\[
= \frac{3+6i-4i-8i^2}{3^2+4^2} = \frac{11+2i}{25} =
\]
Properties of conjugation

Formulae For \(w, z \in \mathbb{C} \),

1. \(\overline{\bar{z}} = z \)

2. \(\overline{z - w} = \bar{z} - \bar{w}, \quad \overline{z + w} = \)

3. \(\overline{zw} = \bar{z}\bar{w}, \)

4. \(z \cdot w = \bar{z}\bar{w}, \)

5. \(\text{Re } z = \frac{1}{2}(z + \bar{z}), \quad \text{Im } z = \frac{1}{2i}(z - \bar{z}) \)

Proof: easy exercise using Cartesian forms e.g. for 5, if \(z = a + bi, \ a, b \in \mathbb{R} \), then

\[
\frac{1}{2}(z + \bar{z}) =
\]

Defn A complex number \(z \) is real if \(\text{Im } z = 0 \) i.e. by 5. above, \(z = \bar{z} \). It is purely imaginary if \(\text{Re } z = 0 \) i.e.

e.g. Show that \(u = \bar{z}w + z\bar{w} \) is real.

A \(\bar{u} = \)

How’s \(\mathbb{C} \) unlike the real number system?

The set \(P \) of positive real numbers can be used to order \(\mathbb{R} \). \(P \) satisfies the following.

i) Any \(x \in \mathbb{R} \) satisfies exactly one of the following:
 a) \(x = 0 \) OR b) \(x \in P \) OR c) \(-x \in P \).

ii) \(P \) is closed under addition i.e.
 for any \(x, y \in P \) we also have \(x + y \in P \).

iii) \(P \) is closed under multiplication i.e.
 for any \(x, y \in P \) we also have

We cannot order \(\mathbb{C} \) the same way for suppose we can find \(P \subset \mathbb{C} \) s.t. ii),iii) hold and i) holds with \(\mathbb{R} \) replaced with \(\mathbb{C} \). Then either
Argand diagram. Polar form.

Represent \(z = a + bi \in \mathbb{C}, a, b \in \mathbb{R} \) by point in plane with co-ordinates \((a, b)\). Above plane called the complex plane & the axes are the real & imaginary axes.
Polar coords on plane suggests

Defn The modulus of \(z = a + bi \), \(a, b \in \mathbb{R} \) is

\[|z| := \text{distance } r \text{ from } 0 \text{ to } z \]

The argument of \(z(\neq 0) \) is the angle

\[\text{Arg } z = \theta \in (-\pi, \pi] \text{ in picture so } \tan \theta = \]

Note \(\theta \) is measured anti-clockwise from the positive real axis so is negative if \(z \) lies below the real axis.

e.g.

\[|3 + 4i| = \]
\[\text{Arg } 3 + 4i = \]
\[| -3 - 4i| = \]
\[\text{Arg} -3 - 4i = \]

Answer here NOT \(\tan^{-1}\left(\frac{-4}{-3}\right) \).

e.g. \(|\bar{z}| = \)

\(\text{Arg} \bar{z} = - \text{Arg} z \) unless

Polar form Consider Cartesian form \(z = a + bi \).

If \(r = |z|, \theta = \text{Arg} z \) then

\(\cos \theta = \)

\[\implies z = a + bi = r \cos \theta + ir \sin \theta = r(\cos \theta + i \sin \theta) \]

This is called the polar form of \(z \).

e.g. Write \(z = 1 + \sqrt{3} \) in polar form.

\(|z| = \)

\(z \) is in the 1st quadrant, so \(\text{Arg} z = \tan^{-1} \sqrt{3} = \)

The polar form is \(z = \)