Lecture 5: Complex Polynomials

Aim Lecture Factorise real
by factorising

Remainder & Factor thm

Defn A complex polynomial of degree n is a fn p:

$p(z) = a_0 +$

where a_0,

If the coeff a_0, \ldots, a_n are

Real poly will also refer to the real-valued

Remainder Thm Let $p(z)$ be a poly &

$\alpha \in \quad$ The remainder
Proof If quotient is \(q(z) \) &

An immediate corollary is

Factor Thm Let \(p(z) \) be a poly & \(\alpha \in \)

Then \(z - \alpha \) is a factor of \(p(z) \) iff

Factorising over \(\mathbb{C} \)

Thm Let \(p(z) = a_n z^n + \ldots + a_1 z + a_0 \) be

a complex poly of degree \(n > 0 \). We can

\[(*) \quad p(z) = a_n(\]

where \(\alpha_1, \]
Furthermore, the factorisation in (*) is unique up to permuting factors.

Defn The number of times a root α_i occurs in the factorisation is called the multiplicity of the root.

e.g. 1 $z^4 + 2z^2 +$

So $i, -i$ are

e.g. 2 Factorise $4 - z^6$ over \mathbb{A} Use thm. Find solns to

$|z|^6 =$

$6 \text{ Arg } z =$

$\implies \text{ Arg } z =$
So roots are \(z = \)

\[4 - z^6 = \]

Factorising over \(\mathbb{R} \)

Use

Propn a) Let \(p(z) = \sum a_j z^j \) be a real poly

& \(z = \alpha \)

b) \((z - \alpha)(z - \bar{\alpha})\)

which is

Proof 1): If \(0 = p(\alpha) = \)

then \(0 = \sum \)
e.g. 2 cont’d Factorise $4 - z^6$ over

A Collect factors corresp

$$(z - \sqrt[3]{2}e^{\pi i/3})(z - \sqrt[3]{2}e^{-\pi i/3}) =$$

Sim $(z - \sqrt[3]{2}e^{2\pi i/3})(z - \sqrt[3]{2}e^{-2\pi i/3}) =$

$4 - z^6 =$

Application to polynomial interpolation

Corollary a) If poly $p(z), q(z)$ have de-
grees \leq n & agree on

b) Any 2 poly which agree on an infinite set

Proof: Clear a) \implies b). Note \(g(z) := p(z) - \)

It also has more than

\textbf{e.g. 2} Given 3 distinct points \((x_1, y_1), (x_2, y_2)\) & \((x_3, y_3)\), there is at most 1 parabola of the form \(y = p(x) \) going through those points.

Why? If \(y = q(x) \) also went through those points then
Symmetric polynomials in the roots

Defn A poly $p(x_1, \ldots, x_n)$ in var x_1, \ldots, x_n is symmetric if it remains

e.g. 4 In 3 var,

$x_1 + x_2 + x_3$ is

$x_1x_2 + x_2x_3$

e.g. 5 Suppose $z^2 + bz + c$ has roots

$z^2 + bz + c = (z-$

\implies sum of

Prop Let $\alpha_1, \ldots, \alpha_n$ be

$p(z) = a_0 + a_1z+$
Then $\frac{a_{n-j}}{a_n} =$

Proof: Just expand

N.B. The a_i's are

Thm Any symmetric poly in the roots of $p(z)$ is a

No proof.

e.g. 6 If $z^3 + 2z^2 + 3z + 4$ has roots α, β

α^2+