Lecture 22: Powers of Matrices

Aim lecture See applications of diagonalisation to

Geometric interpretation of powers

E.g. 1 Consider $T = T_A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with e-basis $B = \ldots$

\[T^2 v_1 = \ldots \]
\[T^3 v_1 = \ldots \]
$T^k \mathbf{v}_1 =$

It’s thus easy to compute powers of T wrt D repr

then T^k (wrt B) is repr by

Change of basis result of thm 1 lect 19 \implies

$A^k =$

Let’s repeat this problem algebraically as opposed to geom.

Powers of matrices

Lemma The product of diagonal matrices is
Proof: Easy computation.

Prop 1) Consider the diagonal matrix

\[D = \]

Then \[D^k = \]

2) If \(A = MDM^{-1} \) then

\[A^k = \]

Proof: 1) by

2) \(A^k = \)

\[= \]

e.g. 2 In e.g. 1 of lecture 20 saw

\[A = \begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}^{-1} \]
Find A^5.

Example of decoupled dts

e.g. 3 Let

$x_1(k) = \text{popn of elves}$
\[x_2(k) = \]
Suppose popn dynamics governed by recursion reln
\[x_1(k + 1) = 3x_1(k) \]
\[x_2(k + 1) = 2 \]
Soln is

Can rewrite 2 eqns as
\[\mathbf{x}(k+) \]
where \(\mathbf{x} \)

Q What if \(A \) is not diagonal?

Diagonalisation & decoupling dts

Let \(\mathbf{x}(k) = \)
Consider the following recurrence reln

\[(*) \]

\[\mathbf{x}(k + 1) = \]

where \(A \in \)

This is another example of a

Note \(\mathbf{x}(1) = \)

\(\mathbf{x}(2) = \)

\(\mathbf{x}(k) = \)

Conclusion Can solve \((*)\) by computing powers of matrices as in e.g. 2.

Alternatively, repeat analysis for cts to get

Thm Suppose \(A = MD \)

where \(M = (f_1 \)

The soln to $x(k+1)$

(†) $x(k) = \alpha_1 \lambda^k$

Proof: As in lect 21 or directly by induction on

$k = 0$: Pick α_1, \ldots

$x(0)$

which is possible since $\{f_1, k > 0\}$

$k > 0$: Suppose (†)

$x(k + 1) = A(\alpha_1$

$= \alpha_1 \lambda^k A$

Example of dts

7
e.g. 4 Solve $x(k)$

$$A = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix}$$

The same matrix as in e.g. 1 lect 21 so $A = MDM^{-1}$

$D =$

$\therefore x(k) =$

Second order dts

As for cts, can convert 2nd order difference eqn into 2 var recurrence reln.

e.g. 4 Solve $x(k + 2) - 3x(k + 1) + 2$

Ans: Let $x_1(k) =$
\[x_2(k) = \]
\[\therefore x_1(k+ \]
\[x_2(k+ \]
\[\mathbf{x}(k+ \]

same matrix as in e.g. 4 lect 22 so \(A = M \)

\[\therefore \mathbf{x}(k) = \]

and \(x(k) = \)

N.B. Characteristic poly of \(A \) corresponds to