
Aim Lecture Interpret complex numbers

Leads to useful

Argand diagram. Polar form.

Represent $z = a + bi \in \mathbb{C}$ by
Polar coords on plane suggests

Defn The modulus of $z = a + |z| :=$
The argument of $z \neq$

so $\tan \theta =$

e.g. 1

$| -3 - 4i| =$

$\text{Arg} -3-$

e.g. 2 $|\bar{z}| =$

Polar form For $r = |z|, \theta$
trig \implies z =

This is called the

\textbf{Euler’s formula for complex exp fn}

\textbf{Lemma} \ (\cos \theta + i \sin \theta)(\cos

\textbf{Proof} \quad \text{LHS} = (\cos \theta \cos \phi -

+ i(\sin \theta \cos \phi

\textbf{Euler’s Formula} \quad \text{For } \theta \in

More gen for \(a, b \)

\(e^{a+bi} := \)

N.B. \(|e^{a+bi}| = \)
Properties of exponential fn

Q Why is Euler’s defn

One **A** Have desirable

Facts 1. It recovers real exp fn when z
2. e^{z+}
3. $(e^z)^{-1} =$
4. For $n \in \mathbb{Z}$, $(e^z)^n =$

Proof: 1. easy.
2. Write $z = a + bi$, $z' = a'$

$LHS = e^{a+bi+}$
\[e^a e^{a'} (\cos (b + \text{lemma}) = e^a e^{a'} (\cos b) \]

=

3. \(e^{-z} e \)

4. For \(n \geq 1 \) it follows by

Clear for \(n = \)

For \(n < 0, \)

An immediate corollary is

De Moivre’s Thm

\((\cos \theta + \)

Proof: LHS = \((e^i \)

Fact 1. For \(n \in \mathbb{Z} \)

\(e^i(\theta + 2n \)
2. \(e^{i\theta} = e^{i\theta'} \implies \theta - \theta' \)

Proof: 1. holds as \(\cos, \sin \)

2. \(e^{i\theta} = e^{i\theta'} \implies e^{i(\theta)} \)

\(\implies \cos(\theta) \)

Products in polar form

For \(r, \theta \in \mathbb{R} \),

\(r \cos \)

This is alternate polar

Consequences For \(z, w \in \)

1. \(|\frac{z}{w}| = \)

2. \(\text{Arg } zw = \)

3. \(|z^n| = \)
4. Arg z^n

Proof half of 1 & 2 only. Others sim.

Let $z = re^{i\theta}$, $w = \quad \frac{z}{w} = \quad$

This is polar

Hence, $|\frac{z}{w}| = \quad$ Arg

e.g. 4 Let $z = -1 + i, w = 3e^{-2i}$

$|zw| = \quad$

Arg zw