Lecture 19: Change of Basis. Eigenbases

Inevitable Woffle

Q Why did we introduce abstract notion of vector spaces?

A 1. To handle infinite dim
2. Defn is

Aim Lecture Show how to simplify some calculations by choosing a sensible

3-dim rotations

e.g. 1 in sensible

Let \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) be rotation
Note: Can show T is
As in lect 16 we see
$T \mathbf{e}_1 =$
$T \mathbf{e}_2 =$
Also $T \mathbf{e}_3 =$
Matrix reprn thm $\implies T$ is multn by $R_{\theta} = (T$

Note: What makes this coord system easy to work with, is that you can deal with the x_3 coord
Q What’s the matrix representing rotn about arbitrary

Idea of method Pick sensible o/n basis

\[B = \{ f_1, f_2, f_3 \} = \]

switch to coords

wrt

rotate using
R

change back to

Change of basis

Let $B = \{f_1, \ldots, f_n\}$

Need to know matrix representing S_B
Lemma Let $M = (f_1$

Then $S_B(v) := [v]_B =$

Proof: Formula 3 lect 16 \implies we need only show S_B^{-1}

$S_B^{-1} e_i =$ vector with

$= \quad \therefore S_B^{-1}$ is matrix muln by

$(S_B^{-1} e_1 \ldots$

e.g. 2 Find matrix A representing rotation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ about axis through $\frac{1}{3}(1, 2, 2)^T$

A Let $B = \{ f_1 = \frac{1}{3}(2, -2, 1), f_2 = \frac{1}{3}(2, 1, \quad), f_3 = \frac{1}{3}(1, 2, \quad) \}$.

ex. Check B is an o/n basis which is “right-
Let $M = (f_1$

Then $A =$

More generally,

Thm 1 Let $B = \{f_1, \ldots f_n\} \subset \mathbb{F}$

& $M = (f_1$

For $A \in M_{nn}(\mathbb{F})$, the matrix C representing

the lin map

Proof: For C to represent T_A wrt B means

$[A \mathbf{v}]_B =$
i.e. S_B^1

Lemma \implies this means

$M^{-1}A \mathbf{v} =$

$\therefore M^{-1}$

$\therefore C =$

e.g. 2 redone A the rotation matrix about

$\frac{1}{3}(1, 2, 2)^T$.

Thm \implies matrix representing T_A wrt to B is $R_\theta = M^{-1}$

Hence $A =$

as before.

Eigenvectors

From now on study lin maps of form $T : V \rightarrow V$
i.e. where domain =

Philosophy of e-vectors Linear $T : V \longrightarrow V$ often pick out their own preferred coord

Key to finding this preferred

Defn 1 Let $T : V \longrightarrow V$ be

$v \in V - 0$, λ a

s.t. Tv

We call λ an

& v an eigenvector with

As usual, for $A \in M_{nn}(\mathbb{F})$ an e-vector or

e.g. 2 again $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ rotn about line $\text{Span}(f)$.
e.g. \(T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \) reflection about line \(\text{Span} \ f_1 \)

\(f_1 \) is an e-

since

Let \(f_2 \) be normal to

N.B. Basis \(\{ f_1, f_2 \} \) gives natural coord for

e.g. \(D \) Diagonal matrices

\(D = \)
Then $D e_i =$

so e_i is an

N.B. Standard basis is a good basis in this case ∴ fn

$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = D$

$\implies y_i$ is a fn of

e.g. 5 $V = C^\infty$ is vect space of

Let $T : V \longrightarrow V$ be differentiation.

Then

Eigenbases

The preferred basis is given in

Defn 2 An eigenbasis for a linear transfor-
mation $T : V \rightarrow V$ is

We sim define the eigenbasis for a square e.g. 4 again The standard basis is an eigenbasis

Thm 2 Let $T : V \rightarrow V$

& $B = \{v_1, \ldots\}$

with corresponding e-values λ_1, \ldots

The matrix D representing T

Proof: Gen matrix reprn thm lect 16 \implies

$D = ([T$
e.g. 6 Find the matrix A with e-values 1,2 and corresponding e-vectors

$f_1 =$

Ans: Let $M = (f_1 f_2) =$

Matrix representing A wrt $\{f_1, f_2\}$ is