Lecture 13: Constructing Bases

Aim Lecture Give effective means of

Bases for $\text{Span}(S) \subseteq \mathbb{F}^m$

Key: A basis is a minimal

Can reduce spanning set to a

Thm 1 Let $A = (v_1 \ v_2 \ldots v_n)$. Recall

$\text{col}(A) = \ldots$

Let U be a

Then we have the following basis of $\text{col}(A)$

$B = \{v_i\}$

Proof: will be clear from following e.g. (also see notes §7.7.3 thm 6)

e.g. 1 Find a basis for $\text{col}(A)$ where
$$A = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & 1 & 0 & 3 \\ 1 & -3 & 2 & 1 \end{pmatrix} = (\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4)$$

1st & 2nd

Thm 1 \implies
Why did it work?

i.e. why’s \{ \mathbf{v}_1 \}

Check lin indep: Omitting 3rd & 4th column

from above calculation, we see

\[\therefore \text{only soln to } x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 = 0 \text{ is} \]

\[\therefore \mathbf{v}_1, \mathbf{v}_2 \text{ are} \]

Check span: 3rd & 4th columns correspond to parameters in soln

Pick soln \(\mathbf{x} \) with

Back substn \(\implies \)

\[0 = A \mathbf{x} = \]
Sim, setting
get soln \(x = \)

so \(v_4 \in \)
\[\therefore \text{Span}(v_1, v_2) = \]

Hence, \(\{v_1, v_2\} \) is lin indep & spans \(\text{col}(A) \)
so is a basis.

Extending linearly independent sets in \(\mathbb{F}^m \)

Max

Thm 2 Let \(W \) be a subspace of \(\mathbb{F}^m \) and
\(S = \{v_1, \ldots, v_n\} \subset W \)
Suppose \(\{w_1, \ldots, w_r\} \)
Then applying method of thm 1 to
\{v_1,\}

Note: 1) We can apply thm 1 since
\{v_1,\}
2) \{v_1, \ldots, v_n\} lin indep \implies

\therefore the basis \textbf{B} produced by this method

Hopefully, the reason why this works will be clear from the following e.g.

\textbf{e.g. 2} Let \(S = \{v_1 = (1, 2, -1)^T, v_2 = (3, 2, -1)^T\} \). Extend \(S \) to a basis of \(\mathbb{R}^3 \).

Ans: Note vectors not parallel \implies
Let \(w_1, \)

Let \(w_1, \)
cont’d

1st, 2nd & 4th

i.e.

Remark What happens to this method if S is lin dependent so that S cannot form part of a basis?

Ans: Method produces a basis with as many members of S as possible.

Bases for subspaces defined by equations

e.g. 3 Let
\[A = \begin{pmatrix} 1 & 0 & 3 & 1 & -1 \\ 0 & 1 & 2 & -1 & 4 \end{pmatrix}. \]

You can check \(W := \{ \mathbf{x} \in \mathbb{R}^5 \mid A \mathbf{x} \} \)

What’s a basis?

A General soln

\[\mathbf{x} = \]

Thus a basis for \(W \) is
Subspaces of $M_{mn}(\mathbb{F})$ and \mathbb{P}_d

We reduce to the \mathbb{F}^n case via coordinates.

Lemma 1 Let $V = \text{vector space/ field } \mathbb{F}$

Let B be a basis with n elements.

Let $W \subseteq V$

Define $[W]_B = \{ \}

i.e. set of coords

If $W \leq V$, then $[W]_B \leq$

Proof: Just check closure axioms. e.g. for $w_1, w_2 \in$

closure under addn given by

e.g. 4 Let $V = \mathbb{P}_2$ & $B = \{1, x, \}$

Let $W = \text{Span}(1, x) = \{ \}$
$[W]_B = \{ [\]

= \text{Span}($

Lemma 2 Let V, B, W be as in Lemma 1. Let $S = \{ w_1, \ldots, w_m \} \subset W$. Then

a) S is lin indep iff

b) S spans W iff

Proof: a) is just scholium lect 11.

$$\text{Span}([S]_B) =$$

$$\{ \lambda_1 w_1$$

$$\lambda_1 w_1$$

$$= [\text{Span}(S)]_B.$$ Thus if S spans W then
Conversely, if \([\mathbf{w}_1]_B, \ldots, [\mathbf{w}_m]_B \) then \([\text{Span}(S)]_B = \)
i.e. \(\text{Span}(S) = \)

e.g. 5 From e.g.1 & lemma 2 we see basis for \(\text{Span}(1+x+x^2, -1+x-3x^2, 1+2x^2, 2+3x+x^2) \)

Bases in other vector spaces

\(\mathbb{R}^\infty := \{ \)

is a vect space / \(\mathbb{R} \) with

addn: \((x_i) + (x'_i) = \)

scalar multn:

Solns to dts can be considered elts of
e.g. 6 Let $W = \{(x_i) \in \mathbb{R}^\infty |$
\[x_n - 2x_{n-1} + x_{n-2} = 0, \quad n \geq 2 \}$
Can show $W \leq \mathbb{R}^\infty$. Find a basis.

A Can use lect 6 material on dts OR
Note $(x_i) \in$
\[d := x_n - x_{n-1} = \]
i.e. (x_0, x_1, \ldots) is an
with initial
\[\therefore (x_i) = (x_0, x_0 + \]
\[= x_0(1, \]