1. Find the subgroup of \mathbb{Z} generated by 4 and 6.

2. Find the subgroup of \mathbb{R}^2 generated by $(1,0)$ and $(0,1)$.

3. Consider $\sigma \in S_6$ defined using 2 line notation by

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 5 & 6 & 4 & 2 & 1
\end{pmatrix}.
$$

Write out σ explicitly as a product of transpositions and hence determine whether it is odd or even. Verify your answer by computing $\sigma \Delta$ where Δ is the difference product.

4. Show that Δ^2 is a symmetric function.

5. Let $f(x_1,\ldots,x_n)$ be a complex polynomial. Show that the following two conditions on f are equivalent: i) for any transposition τ we have $\tau.f = -f$ and ii) for any $\sigma \in S_n$ we have $\sigma.f = f$ when σ is even and $\sigma.f = -f$ when σ is odd. Such a polynomial is said to be anti-symmetric. Find some examples.

6. There is a right-handed version of all the results in lectures 6. For $H \leq G$, we define a right coset of H in G to be a set of the form $Hg := \{hg|h \in H\}$ for some $g \in G$. Show that G is also a disjoint union of right cosets. (The sophisticated approach is via G^{op}). The set of right cosets is denoted $H \setminus G$. Let $\iota : G \longrightarrow G : g \mapsto g^{-1}$ be the inverse map. It is clearly a bijection. Show that $\iota(Hg) = g^{-1}H$ so ι gives a 1-1 correspondence between $H \setminus G$ and G/H. That is why there is no left or right index.

7. Let G be the symmetric group on 4 symbols S_4 and H be the subset $\{\sigma|\sigma(4) = 4\}$. Show that H is a subgroup. Compute all the left and right cosets of H in G. Verify Lagrange’s theorem and the 1-1 correspondence between left and right cosets given in question 5.

8. Let H,K be subgroups of G of order 3 and 5 respectively. Use Lagrange’s theorem to show that $H \cap K = 1$.

9. Let G be a group with prime order. Use Lagrange’s theorem to find all subgroups of G. Show that G is cyclic.

10. Using the previous exercise or otherwise, find all subgroups of S_3.

11. Show associativity of the subset product claimed in lecture 7 i.e. for subsets K_1,K_2,K_3 of a group G we have $(K_1K_2)K_3 = K_1(K_2K_3)$.

(by Daniel Chan)
12. Let \(G = \mathbb{C}^\ast \) and \(H \) be the subset of complex numbers of modulus 1. Show that \(H \) is a normal subgroup of \(G \) and describe the cosets of \(H \). Show that \(G/H \) is isomorphic to a subgroup of \(\mathbb{R}^\ast \).

13. Show that \(A_n \leq S_n \) is generated by 3-cycles.

14. Let \(G = GL_2 \) and let \(H \) be the subgroup of elements of the form \(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \) where \(a, c \in \mathbb{R}^\ast \) and \(b \in \mathbb{R} \). Compute all the left and right cosets of \(H \) in \(G \). If you know some projective geometry you may wish to show that \(G/H \) can be naturally identified with the real projective line.

15. Compute explicitly all cosets of \(SL_n := \{ M \in GL_n \mid \det M = 1 \} \) in \(GL_n \).

16. Compute all cosets of \(O_2 \) in \(GL_2 \).

17. Let \(G \) be a group and \(H \) be a subgroup of index two. Show that \(H \) is normal.

18. Why is \(H = A_n \) normal in \(G = S_n \)? Find a group isomorphic to \(G/H \).

19. Let \(z \in \mathbb{C}^\ast \) and \(\phi \) be multiplication by \(z \). Is \(\phi \) a group homomorphism from a) \(\mathbb{C} \rightarrow \mathbb{C} \), b) \(\mathbb{C}^\ast \rightarrow \mathbb{C}^\ast \)?

20. Find all isomorphisms \(\phi : \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \) where \(p \) is prime.

21. Isomorphic groups should be identical as far as their group structure is concerned. To illustrate this, consider an isomorphism \(\phi : G \rightarrow G' \).

 Show

 (a) \(G \) is abelian if and only if \(G' \) is.

 (b) \(G, G' \) have the same order.

 (c) There is a natural bijection between the the subgroups of \(G \) and the subgroups of \(G' \). It preserves orders, inclusions and normality.

 (d) If \(g \in G \) has order \(n \), so does \(\phi(g) \).

22. Show that \(S_3 \) and \(\mathbb{Z}/6\mathbb{Z} \) both have order 6 (so are isomorphic sets) but are not isomorphic as groups.

23. Fix an integer \(n \geq 2 \). Suppose that \(G \) is a group with distinct elements \(\{1, \sigma, \sigma^2, \ldots, \sigma^{n-1}, \tau, \sigma \tau, \ldots, \sigma^{n-1} \tau\} \) where \(\sigma^n = 1 = \tau^2 \) and \(\tau \sigma = \sigma^{-1} \tau \). Show that \(G \) is isomorphic to \(D_n \).

24. Find all normal subgroups \(H \) of \(D_n \). Show that \(G/H \) is dihedral or cyclic. (N.B. This means isomorphic to a dihedral group or cyclic group).

25. For \(\sigma \in S_n \) we let \(\Phi(\sigma) \) be the linear transformation \(\Phi(\sigma) : (x_1, \ldots, x_n)^t \mapsto (x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)})^t \). Show that \(\Phi : S_n \rightarrow GL_n \) is a group homomorphism. Determine its image.
26. Show that $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to the group μ_n introduced in problem sheet 1.

27. Let $f : S \rightarrow T$ be a bijection of sets. Show that $\phi : \text{Perm } S \rightarrow \text{Perm } T : \sigma \mapsto f\sigma f^{-1}$ is an isomorphism.

28. Let W be a 2-dimensional subspace of \mathbb{R}^3. Recall that $\mathbb{R}^3, \mathbb{R} = \mathbb{R}^1$ are groups with group multiplication given by vector addition and that W is a subgroup of \mathbb{R}^3. Show that \mathbb{R}^3/W is isomorphic to \mathbb{R} as a group. (In fact, there is a natural vector space structure on \mathbb{R}^3/W and the isomorphism is even of vector spaces).