1. (50 marks total) The following are each worth 5 marks. Justify your answers with a brief explanation (but be careful to mention the key points).

 a) Are $3, 3i$ associates in $\mathbb{Z}[i]$?

 b) What is the order of the rotational symmetry group of a tetrahedron?

 c) Is $x^3 + 2x^2 - 2x + 6$ irreducible in $\mathbb{Q}[x]$? Is $\mathbb{Q}[x]/\langle x^3 + 2x^2 - 2x + 6 \rangle$ a field?

 d) Simplify $\mathbb{C}[x, y]/\langle y - x \rangle$. Is $\langle y - x \rangle \triangleleft \mathbb{C}[x, y]$ prime?

 e) Is $\mathbb{Z}[x]$ a UFD? Is it a PID?

 f) Is $[\mathbb{Q}(\cos \frac{\pi}{16}) : \mathbb{Q}]$ a power of two?

 g) Consider an algebraic field extension K/E and a finite field extension E/F. Is K/F algebraic?

 h) Let S be a G-set and $g \in G$. Show $S^g = S^{g^{-1}}$.

 i) What are all the ideals of $\mathbb{R}[x]/\langle x^2 - x \rangle$?

 j) What is the group of units $(\mathbb{C}[x, y]/\langle xy - 1 \rangle)^*$?

2. (10 marks) In this question, we work in the ring $R = \mathbb{Z}[i\sqrt{2}]$. Find the greatest common divisor of $2i\sqrt{2}$ and $2 + i\sqrt{2}$ in R (be sure to show working). What is the ideal $\langle 2i\sqrt{2}, 2 + i\sqrt{2}, 1 + 9i\sqrt{2} \rangle$? (Make sure your answer is in simplest form!)

3. (10 marks) In each question below, make sure you justify your answer fully. Let

 \[\alpha := \sqrt[3]{2 + \sqrt{2}}. \]

 a) Is α algebraic over \mathbb{Q}? If so, find the minimal polynomial of α over \mathbb{Q}.

 b) What is $[\mathbb{Q}(\alpha) : \mathbb{Q}]$?

 c) What is the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q}?

 d) Is $\sqrt[3]{2} \in \mathbb{Q}(\alpha)$?

4. (8 marks) Consider the subset $S := \{ p(x) \in \mathbb{R}[x] | p(-x) = p(x) \}$ of even polynomials.

 a) Show that S is a subring of $\mathbb{R}[x]$.

 b) Consider the map $\phi : \mathbb{R}[y] \rightarrow \mathbb{R}[x] : p(y) \mapsto p(x^2)$. Is ϕ an homomorphism? Justify your answer with a brief explanation.

Please see over . . .
c) Show that the image of ϕ is S.

d) Is $\mathbb{R}[y] \simeq S$? Justify fully, your answer.

5. (10 marks) In this question, we let $R = \mathbb{Z}[i]$.

a) Show that $1 + i$ is irreducible in R.

b) Show that 2 is reducible in R.

c) Factorise $2x^2 - 18$ into irreducibles in $R[x]$. Make sure you prove that your factors are indeed irreducible.

6. (12 marks) Let G be the group of 3×3-matrices below

$$G = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \mid a, b, c \in \{1, -1\} \right\}.$$

We let G act on \mathbb{R}^3 by matrix multiplication, that is, if $v \in \mathbb{R}^3$ then $g.v := gv$.
Consider also the following vectors in \mathbb{R}^3

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

a) What is the order of G?

b) Find the G-orbit of v_1 and its stabiliser.

c) Prove that $G.v_1 \simeq G.v_2$ as G-sets.

d) Prove that $G.v_1$ is not isomorphic to $G.v_3$ as G-sets.