MATH3710: Higher Algebra I, Problem Sheet 6

1. Describe all abelian groups of order 24 up to isomorphism.

2. Find the n-torsion subgroup A_n of $A = \mathbb{Q}/\mathbb{Z}$ and $A = \mathbb{Z}/m\mathbb{Z}$.

3. Let $G = \mathbb{Z}^3$ and H be the subgroup generated by

$$\begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ -3 \end{pmatrix}.$$

Write G/H as a product of cyclic groups. Hint: Use the proof of the classification of finitely generated abelian groups given in lecture 22.

4. Let $G = \mathbb{Z}/h_1\mathbb{Z} \times \ldots \times \mathbb{Z}/h_r\mathbb{Z} \times \mathbb{Z}^s$. What is the torsion subgroup H and G/H. Show that the number s depends only on the isomorphism class of G.

5. Find a composition series for S_4.

6. For a finite group G, define the k-th derived group inductively by, $G^{(k)} := G^{(k-1)}$ and $G^{(1)} = G'$. Show that

$$1 \leq G^{(k)} \leq G^{(k-1)} \leq \ldots \leq G' \leq G$$

is a normal chain of subgroups of G. Show that G is solvable if and only if $G^{(r)} = 1$ for some $r \in \mathbb{N}$.

7. Is the dihedral group solvable? What is the length of a dihedral group?