## Teaching

In Semester 1, 2018 I taught half of MATH1081 Discrete Mathematics.

In Semester 2, 2018 I will teach (one stream of) the Algebra half of MATH1241 Higher Mathematics 1B.

My Honours course MATH5425 Graph Theory will run in Term 3, 2019. For more detail on this course, see below.

### MATH5425 Graph Theory

MATH5425 Graph Theory is a 6 UOC level V course which I put together, covering classical graph theory as well as results proved using the probabilistic method. This course has run in 2006, 2008, 2010, 2012, 2015 and 2017, and will run in term 3, 2019.

Graphs are fundamental objects in combinatorics, which can be used to model the relationships between the members of a network or system. They have many applications in areas such as computer science, statistical physics and computational biology. Specifically, a graph is a set of vertices and a set of edges, where (generally) an edge is an unordered pair of distinct vertices. The course covers various combinatorial aspects of graph theory and introduces some of the tools used to tackle graph theoretical questions. A particular focus will be on the use of probability to answer questions in graph theory. This is known as the "Probabilistic Method", initiated by Erdős.

Topics include:

• matchings, coverings and packings,
• connectivity,
• graph colourings: vertex colourings and edge colourings,
• planar graphs,
• Ramsey theory,
• the probabilistic method,
• random graphs.

The main textbook is R. Diestel, Graph Theory 5th edn. (Springer, 2017), which is also available online at diestel-graph-theory.com.

Some material is also drawn from

• B. Bollobás, Modern Graph Theory (Cambridge University Press, 1998),
• N. Alon and J. Spencer, The Probabilistic Method (Wiley 2000).

### Honours

Here is a list of past Honours students, as well as some possible topics for an Honours project.